Your browser doesn't support javascript.
loading
Expanding the Ajudazol Cytotoxin Scaffold: Insights from Genome Mining, Biosynthetic Investigations, and Novel Derivatives.
Zeng, Hu; Birkelbach, Joy; Hoffmann, Judith; Popoff, Alexander; Volz, Carsten; Müller, Rolf.
Afiliação
  • Zeng H; Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Saarland, Germany.
  • Birkelbach J; Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Saarland, Germany.
  • Hoffmann J; Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Saarland, Germany.
  • Popoff A; Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Saarland, Germany.
  • Volz C; Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Saarland, Germany.
  • Müller R; Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Saarland, Germany.
J Nat Prod ; 85(11): 2610-2619, 2022 11 25.
Article em En | MEDLINE | ID: mdl-36331369
ABSTRACT
Myxobacteria have proven to be a rich source of natural products, but their biosynthetic potential seems to be underexplored given the high number of biosynthetic gene clusters present in their genomes. In this study, a truncated ajudazol biosynthetic gene cluster in Cystobacter sp. SBCb004 was identified using mutagenesis and metabolomics analyses and a set of novel ajudazols (named ajudazols C-J, 3-10, respectively) were detected and subsequently isolated. Their structures were elucidated using comprehensive HR-MS and NMR spectroscopy. Unlike the known ajudazols A (1) and B (2), which utilize acetyl-CoA as the biosynthetic starter unit, these novel ajudazols were proposed to incorporate 3,3-dimethylacrylyl CoA as the starter. Ajudazols C-J (3-10, respectively) are characterized by varying degrees of hydroxylation, desaturation, and different glycosylation patterns. Two P450-dependent enzymes and one glycosyltransferase are shown to be responsible for the hydroxylation at C-8, the desaturation at C-15 and C-33, and the transfer of a d-ß-glucopyranose, respectively, based on mutagenesis results. One of the cytochrome P450-dependent enzymes and the glycosyltransferase were found to be encoded by genes located outside the biosynthetic gene cluster. Ajudazols C-H (3-8, respectively) exhibit cytotoxicity against various cancer cell lines.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Myxococcales / Citotoxinas Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Myxococcales / Citotoxinas Idioma: En Ano de publicação: 2022 Tipo de documento: Article