Your browser doesn't support javascript.
loading
Phase separation enabled silver nano-array.
Liu, Tianchi; Chang, Tzu-Lan; Zhou, Xiaqing; Ruppel, Scott; Liang, Jun F.
Afiliação
  • Liu T; Tianchi Liu, Tzu-Lan Chang, Scott Ruppel, and Xiaqing Zhou, graduate students, Department of Chemistry, and Chemical Biology, Schaefer School of Engineering and Science, Stevens Institute of Technology, Hoboken, NJ, 07030, United States of America.
  • Chang TL; Tianchi Liu, Tzu-Lan Chang, Scott Ruppel, and Xiaqing Zhou, graduate students, Department of Chemistry, and Chemical Biology, Schaefer School of Engineering and Science, Stevens Institute of Technology, Hoboken, NJ, 07030, United States of America.
  • Zhou X; Tianchi Liu, Tzu-Lan Chang, Scott Ruppel, and Xiaqing Zhou, graduate students, Department of Chemistry, and Chemical Biology, Schaefer School of Engineering and Science, Stevens Institute of Technology, Hoboken, NJ, 07030, United States of America.
  • Ruppel S; Tianchi Liu, Tzu-Lan Chang, Scott Ruppel, and Xiaqing Zhou, graduate students, Department of Chemistry, and Chemical Biology, Schaefer School of Engineering and Science, Stevens Institute of Technology, Hoboken, NJ, 07030, United States of America.
  • Liang JF; Tianchi Liu, Tzu-Lan Chang, Scott Ruppel, and Xiaqing Zhou, graduate students, Department of Chemistry, and Chemical Biology, Schaefer School of Engineering and Science, Stevens Institute of Technology, Hoboken, NJ, 07030, United States of America.
Nanotechnology ; 34(6)2022 Nov 22.
Article em En | MEDLINE | ID: mdl-36347019
The surface-supported silver nanoparticles have been studied and applied in various applications. Many unique nanostructures have been introduced into this field to improve the functionalities of the surfaces depending on application purposes. We created featured silver nano-array surfaces by utilizing the solvent-mediated phase transition on the surface grafted with poly (acrylic) acids polymer chains and taking advantage of the low temperature of argon gas discharged plasma as a reducing agent. The applied solvents and grafted polymer chain densities affected the phase transition and thus determined the outcome of surface nano-array patterns. However, the total loaded silver ions on the surface affected silver nano-array structures at the sub-micron levels. The featured silver patterned surfaces made in the optimal conditions present a favorable surface-enhanced Raman spectroscopy enhancement as well as recyclability for detection re-usage. This novel method prepares tunable silver nanopatterned surfaces and provides a new approach to various potential applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article