Your browser doesn't support javascript.
loading
Elucidating the Effect of Nanoscale Receptor-Binding Domain Organization on SARS-CoV-2 Infection and Immunity Activation with DNA Origami.
Zhang, Jialu; Xu, Yunyun; Chen, Mingying; Huang, Yihao; Song, Ting; Yang, Chaoyong; Yang, Yang; Song, Yanling.
Afiliação
  • Zhang J; The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, F
  • Xu Y; Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
  • Chen M; The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, F
  • Huang Y; The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, F
  • Song T; The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, F
  • Yang C; The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, F
  • Yang Y; Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
  • Song Y; Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
J Am Chem Soc ; 144(46): 21295-21303, 2022 11 23.
Article em En | MEDLINE | ID: mdl-36356984
ABSTRACT
Multivalent display of SARS-CoV-2 RBDs (receptor-binding domains, prime proteins for viral infection and as vaccine immunogens) affects infectivity and as immunogens on a virus-like particle (VLP) can enhance immune response. However, the viral attachment and immune response initiated by the copy number and distribution pattern of SARS-CoV-2 RBDs remain poorly understood. Here, we organize SARS-CoV-2 RBDs on DNA nanoballs of ∼74 nm diameter by an aptamer-guided assembly for a systematic interrogation. We find that both the affinity and the rate of the DNA-based VLP binding to the host cell increase with the RBD number (10-90). In addition, a concentrated RBD distribution promotes faster and stronger interaction to the host cell than an even RBD distribution. Moreover, it is interesting to learn that the immunity activation does not increase linearly with RBD numbers on the VLP. As few as 20 evenly distributed RBDs per VLP can elicit up to 86% immunity of macrophage cells. Overall, the work provides a new tool to study SARS-CoV-2 infection and VLP-based immunity activation, which should deepen our understanding of viral infection and facilitate the development of highly effective antiviral vaccines.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article