Your browser doesn't support javascript.
loading
Stress radiographic assessment of collateral ligament constraints on the feline tarsocrural joint.
Martin, E S; Foo, T; Hosgood, G; Moles, A D.
Afiliação
  • Martin ES; Surgery Department, Western Australian Veterinary Emergency and Specialty (where the research was conducted), Success, Australia.
  • Foo T; Surgery Department, Western Australian Veterinary Emergency and Specialty (where the research was conducted), Success, Australia.
  • Hosgood G; Surgery Department, The Animal Hospital - Murdoch University, Murdoch, Australia.
  • Moles AD; Surgery Department, Western Australian Veterinary Emergency and Specialty (where the research was conducted), Success, Australia.
Aust Vet J ; 101(1-2): 65-77, 2023 Jan.
Article em En | MEDLINE | ID: mdl-36358003
ABSTRACT

INTRODUCTION:

This cadaveric study describes the collateral ligament constraints on the feline tarsocrural joint using stress radiography.

METHODS:

Thirty-six feline cadaveric hindlimbs free of orthopaedic disease were placed in a custom-made jig and controlled stress radiography was performed before and after transection of one, or both collateral ligaments. Changes in varus and valgus deviation and pronation and supination were measured at three limb angles (extension, 120o flexion and 90o flexion).

RESULTS:

There was a significant positive percentage change in the mean angle of varus deviation after transection of the fibulocalcaneal ligament at all limb positions (extension 41%, 120° 78%, 90° 63%). There was a significant positive percentage change in the mean angle of varus deviation after transection of the fibulotalar ligament at extension (14%). There was a significant positive percentage change in the mean angle of varus deviation after transection of both fibulocalcaneal and fibulotalar ligaments at all limb positions (extension 58%, 120° 67%, 90° 67%), and in the mean angle of valgus deviation (100%) and supination (89%) at 90 degrees flexion. There was a significant positive percentage change in the mean angle of valgus deviation after transection of the tibiocentral ligament at all limb positions (extension mean 79%, 120° 43%, 90° 49%) and the mean angle of pronation at 120 degrees flexion (10%). There was a significant positive percentage change in the mean angle of varus deviation after transection of the tibiotalar ligament at extension (11%) and at 90 degrees flexion (54%) and in the mean angle of pronation at all limb positions (extension 11%, 120° 19%, 90° 32%). There was a significant positive percentage change in the mean angle of valgus deviation (extension 255%, 120° 172%, 90° 176%) and pronation (extension 58%, 120° 134%, 90° 76%) after transection of the tibiocentral and tibiotalar ligaments at all limb positions and in the mean angle of varus deviation at extension (13%) and 90 degrees flexion (69%).

CONCLUSION:

The medial collateral ligaments prevent against excessive valgus deviation and pronation, and the lateral collateral ligaments prevent against excessive varus deviation and supination. At 90 degrees flexion subluxation of the talus occurs on the ipsilateral side of the ligament injury resulting in an additional direction of instability.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças do Gato / Ligamentos Colaterais / Lesões no Cotovelo / Instabilidade Articular Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças do Gato / Ligamentos Colaterais / Lesões no Cotovelo / Instabilidade Articular Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article