Your browser doesn't support javascript.
loading
A Theoretical Study of the C-X Bond Cleavage Mediated by Cob(II)Aloxime.
Seijas, Luis E; Zambrano, Cesar H; Rodríguez, Vladimir; Alí-Torres, Jorge; Rincón, Luis; Torres, F Javier.
Afiliação
  • Seijas LE; Grupo de Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia.
  • Zambrano CH; Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador.
  • Rodríguez V; Departamento de Matemática, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador.
  • Alí-Torres J; Departamento de Química, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá 111321, Colombia.
  • Rincón L; Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador.
  • Torres FJ; Grupo de Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia.
Molecules ; 27(21)2022 Oct 26.
Article em En | MEDLINE | ID: mdl-36364105
ABSTRACT
The C-X bond cleavage in different methyl halides (CH3X; X = Cl, Br, I) mediated by 5,6-dimethylbenzimidazole-bis(dimethylglyoximate)cobalt(II) (CoIICbx) was theoretically investigated in the present work. An SN2-like mechanism was considered to simulate the chemical process where the cobalt atom acts as the nucleophile and the halogen as the leaving group. The reaction path was computed by means of the intrinsic reaction coordinate method and analyzed in detail through the reaction force formalism, the quantum theory of atoms in molecules (QTAIM), and the calculation of one-electron density derived quantities, such as the source function (SF) and the spin density. A thorough comparison of the results with those obtained in the same reaction occurring in presence of 5,6-dimethylbenzimidazole-bis(dimethylglyoximate)cobalt(I) (CoICbx) was conducted to reveal the main differences between the two cases. The reactions mediated by CoIICbx were observed to be endothermic and possess higher activation energies in contrast to the reactions where the CoICbx complex is present. The latter was supported by the reaction force results, which suggest a relationship between the activation energy and the ionization potentials of the different nucleophiles present in the cleavage reaction. Moreover, the SF results indicates that the lower axial ligand (i.e., 5,6-dimethylbenzimidazole) exclusively participates on the first stage of the reaction mediated by the CoIICbx complex, while for the CoICbx case, it appears to have an important role along the whole process. Finally, the QTAIM charge analysis indicates that oxidation of the cobalt atom occurs in both cases; at the same time, it suggests the formation of an uncommon two-center one-electron bond in the CoIICbx case. The latter was confirmed by means of electron localization calculations, which resulted in a larger electron count at the Co-C interatomic region for the CoICbx case upon comparison with its CoIICbx counterpart.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teoria Quântica / Cobalto Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teoria Quântica / Cobalto Idioma: En Ano de publicação: 2022 Tipo de documento: Article