Extremely Soft, Stretchable, and Self-Adhesive Silicone Conductive Elastomer Composites Enabled by a Molecular Lubricating Effect.
Nano Lett
; 22(22): 8966-8974, 2022 Nov 23.
Article
em En
| MEDLINE
| ID: mdl-36374184
Softness, adhesion, stretchability, and fast recovery from large deformations are essential properties for conductive elastomers that play an important role in the development of high-performance soft electronics. However, it remains an ongoing challenge to obtain conductive elastomers that combine these properties. We have fabricated a super soft (Young's modulus 2.3-12 kPa), highly stretchable (up to 1500% strain), and underwater adhesive silicone conductive elastomer composite (SF-C-PDMS) by incorporating dimethyl silicone oil as a lubricating agent in a cross-linked molecular network. The resultant SF-C-PDMS not only exhibits superior softness but also can readily recover after a strain of 1000%. The initial resistance only decreases by 8% after 100000 cycles of tensile fatigue test (100% strain, 0.5 Hz, 15 mm/s). This multifunctional silicone conductive elastomer composite is obtained in a one-step preparation at room temperature using commercially available materials. Moreover, we illustrate the capabilities of this composite in motion sensing.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article