Your browser doesn't support javascript.
loading
Cynapanoside A exerts protective effects against obesity-induced diabetic nephropathy through ameliorating TRIM31-mediated inflammation, lipid synthesis and fibrosis.
Luo, Jing; Tan, Jun; Zhao, Junjie; Wang, Longyan; Liu, Jin; Dai, Xianling; Sun, Yan; Kuang, Qin; Hui, Junmin; Chen, Jinfeng; Kuang, Gang; Chen, Shaocheng; Wang, Yangli; Ge, Chenxu; Xu, Minxuan.
Afiliação
  • Luo J; Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Experiment Center, School of Biological and Chemical Engineering, Chongqing University of Education, Cho
  • Tan J; Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing U
  • Zhao J; Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing U
  • Wang L; Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing U
  • Liu J; Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing U
  • Dai X; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
  • Sun Y; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
  • Kuang Q; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
  • Hui J; Experiment Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.
  • Chen J; Experiment Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.
  • Kuang G; Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing U
  • Chen S; Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.
  • Wang Y; Chongqing Institute for Food and Drug Control & Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 401121, PR China.
  • Ge C; Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing U
  • Xu M; Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing U
Int Immunopharmacol ; 113(Pt B): 109395, 2022 Dec.
Article em En | MEDLINE | ID: mdl-36375322
ABSTRACT
Obesity is a major predictive factor for the diabetic nephropathy (DN). However, the precise mechanism and therapeutic approach still require to be investigated. Cynapanosides A (CPS-A) is a glycoside derived from the Chinese drug Cynanchum paniculatum that has numerous pharmacological activities, but its regulatory function on obesity-induced kidney disease is still obscure. In the present study, we attempted to explore the renoprotective effects of CPS-A on the established DN in high fat diet (HFD)-fed mice, and the underlying mechanisms. We initially found that CPS-A significantly ameliorated the obesity and metabolic syndrome in mice with HFD feeding. Mice with HFD-induced DN exerted renal dysfunctions, indicated by the elevated functional parameters, including up-regulated blood urea nitrogen (BUN), urine albumin and creatinine, which were significantly attenuated by CPS-A in obese mice. Moreover, histological changes including glomerular enlargement, sclerosis index and collagen deposition in kidney of obese mice were detected, while being strongly ameliorated by CPS-A. Additionally, podocyte loss induced by HFD was also markedly mitigated in mice with CPS-A supplementation. HFD feeding also led to lipid deposition and inflammatory response in renal tissues of obese mice, whereas being considerably attenuated after CPS-A consumption. Intriguingly, we found that tripartite motif-containing protein 31 (TRIM31) signaling might be a crucial mechanism for CPS-A to perform its renoprotective functions in mice with DN. The anti-inflammatory, anti-fibrotic and anti-dyslipidemia capacities of CPS-A were confirmed in the mouse podocytes under varying metabolic stresses, which were however almost abolished upon TRIM31 ablation. These data elucidated that TRIM31 expression was largely required for CPS-A to perform its renoprotective effects. Collectively, our study is the first to reveal that CPS-A may be a promising therapeutic strategy for the treatment of obesity-induced DN or associated kidney disease.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus / Nefropatias Diabéticas / Podócitos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus / Nefropatias Diabéticas / Podócitos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article