Your browser doesn't support javascript.
loading
Versatile iodine-doped BiOCl with abundant oxygen vacancies and (110) crystal planes for enhanced pollutant photodegradation.
Deng, Yichao; Xu, Mengying; Jiang, Xiangyang; Wang, Junting; Tremblay, Pier-Luc; Zhang, Tian.
Afiliação
  • Deng Y; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China.
  • Xu M; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; School of Resources and Environmental Engineering, Wuhan University of Technolog
  • Jiang X; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, PR China.
  • Wang J; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China.
  • Tremblay PL; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China. Electronic address: pierluct@whut.edu.cn.
  • Zhang T; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; School of Resources and Environmental Engineering, Wuhan University of Technolog
Environ Res ; 216(Pt 4): 114808, 2023 01 01.
Article em En | MEDLINE | ID: mdl-36379237
Crystal plane regulation, defect engineering, and element doping can effectively solve the problems of large band gaps, poor light absorption, and fast recombination of BiOCl. In this work, iodine-doped BiOCl (I/BiOCl) nanowafers with abundant (110) crystal planes and oxygen vacancies (OV) were prepared by a simple hydrothermal method and assessed for pollutant photodegradation. I/BiOCl with a molar ratio of I to Cl of 0.6 (I0.6/BiOCl) degraded under visible light 95.8% of the toxic dye rhodamine B and 85.1% of the persistent antibiotic tetracycline in 5 and 10 min, respectively. In comparison, unmodified BiOCl photodegraded only between 42.0% and 48.2% of these critical water pollutants. Furthermore, I0.6/BiOCl was highly stable with most of its photocatalytic activity remaining after 4 cycles. Three reasons explain the excellent photodegradation properties of I0.6/BiOCl. First, the doped photocatalyst grew abundant (110) crystal planes, which inhibits the recombination of photogenerated electron-hole pairs. Second, the large quantity of OV present in I0.6/BiOCl increased active sites for reactive oxygen species generation, improved photogenerated charge separation, and pollutants adsorption. Lastly, I0.6/BiOCl had a modified electronic band structure enhancing light absorption. Overall, these results describe a promising photocatalyst capable of degrading efficiently major pollutants with different structures.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Ambientais / Iodo Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Ambientais / Iodo Idioma: En Ano de publicação: 2023 Tipo de documento: Article