Your browser doesn't support javascript.
loading
Estimating the area under the ROC curve when transporting a prediction model to a target population.
Li, Bing; Gatsonis, Constantine; Dahabreh, Issa J; Steingrimsson, Jon A.
Afiliação
  • Li B; Department of Biostatistics, Brown University, Providence, Rhode Island, USA.
  • Gatsonis C; Department of Biostatistics, Brown University, Providence, Rhode Island, USA.
  • Dahabreh IJ; CAUSALab, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
  • Steingrimsson JA; Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
Biometrics ; 79(3): 2382-2393, 2023 09.
Article em En | MEDLINE | ID: mdl-36385607
We propose methods for estimating the area under the receiver operating characteristic (ROC) curve (AUC) of a prediction model in a target population that differs from the source population that provided the data used for original model development. If covariates that are associated with model performance, as measured by the AUC, have a different distribution in the source and target populations, then AUC estimators that only use data from the source population will not reflect model performance in the target population. Here, we provide identification results for the AUC in the target population when outcome and covariate data are available from the sample of the source population, but only covariate data are available from the sample of the target population. In this setting, we propose three estimators for the AUC in the target population and show that they are consistent and asymptotically normal. We evaluate the finite-sample performance of the estimators using simulations and use them to estimate the AUC in a nationally representative target population from the National Health and Nutrition Examination Survey for a lung cancer risk prediction model developed using source population data from the National Lung Screening Trial.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article