Your browser doesn't support javascript.
loading
Taxifolin-3-O-glucoside from Osbeckia nepalensis Hook. mediates antihyperglycemic activity in CC1 hepatocytes and in diabetic Wistar rats via regulating AMPK/G6Pase/PEPCK signaling axis.
Gurumayum, Shalini; Bharadwaj, Simanta; Sheikh, Yunus; Barge, Sagar R; Saikia, Kangkon; Swargiary, Deepsikha; Ahmed, Semim Akhtar; Thakur, Debajit; Borah, Jagat C.
Afiliação
  • Gurumayum S; Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India; Department of Biotechnology, Gauhati University, Guwahati, 14, Assam, India.
  • Bharadwaj S; Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India.
  • Sheikh Y; Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India.
  • Barge SR; Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India.
  • Saikia K; Microbial Biotechnology Laboratory, Institute of Advanced Study in Science and Technology, India.
  • Swargiary D; Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India.
  • Ahmed SA; Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India.
  • Thakur D; Microbial Biotechnology Laboratory, Institute of Advanced Study in Science and Technology, India.
  • Borah JC; Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India. Electronic address: borahjc@gmail.com.
J Ethnopharmacol ; 303: 115936, 2023 Mar 01.
Article em En | MEDLINE | ID: mdl-36403743
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE Osbeckia nepalensis Hook. f. is an ICMR documented plant well known for its antidiabetic uses among the folk people of Northeast Region of India. In-depth study with scientific substantiation of the plant may uphold the therapeutic potential against the treatment of type 2 diabetes mellitus (T2DM). AIM OF THE STUDY The present study evaluates the traditionally claimed prophylactic potential of O. nepalensis and its extracts along with the isolated compound taxifolin-3-O-glucoside (TG) against the downregulation of T2DM related hepatic gluconeogenesis through in vitro, in vivo and in silico conditions as a means of ameliorating hyperglycemia. MATERIALS AND

METHODS:

Antidiabetic potential of O. nepalensis was carried out in both CC1 hepatocytes (in vitro) and STZ-induced diabetic male Wistar rats (in vivo). Enriched bioactive fraction and bioactive molecules were isolated through bioactivity-guided fractionation, yielding two major molecules, taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside. The bioactivity of taxifolin-3-O-glucoside was validated through immunoblotting techniques aided by in silico molecular docking and simulations.

RESULTS:

Methanolic extract of O. nepalensis and taxifolin-3-O-glucoside (TG) isolated thereof enhanced the uptake of glucose in CC1 hepatocytes and downregulates the gluconeogenic enzymes (G6Pase and PEPCK) and its related transcription factors (FOXO1, HNF4α and PGC1α) through the stimulation of AMPK phosphorylation in in vitro condition. Moreover, in in vivo experiments, the in vitro most active fraction BuSFr1 (consisting of the two active major compounds taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside) exhibited a substantial decrease in elevated blood glucose level and increase the glucose tolerance as well as plasma insulin level. In silico molecular docking and simulations for TG with the protein G6Pase inferred the docking sites and stability and showed taxifolin-3-O-glucoside as more potent and non-toxic as compared to quercitin-3-O-rhamnoside.

CONCLUSION:

The traditionally claimed antidiabetic effect of O. nepalensis has been proved to be effective in lowering the blood glucose level through in vitro, in vivo and in silico analysis which will pave a way for the development of antidiabetic phytopharmaceutical drugs which can be validated through further clinical studies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 2 / Hipoglicemiantes Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 2 / Hipoglicemiantes Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article