Your browser doesn't support javascript.
loading
To explore the regulatory role of Wnt/P53/Caspase3 signal in mouse ovarian development based on LFQ proteomics.
Ma, Yabo; Du, Changzheng; Xie, Xianguo; Zhang, Yan; Wang, Chao; Xu, Jinrui; Xia, Guoliang; Yang, Yi.
Afiliação
  • Ma Y; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China.
  • Du C; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China.
  • Xie X; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China.
  • Zhang Y; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China.
  • Wang C; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; State Key Laboratory of Agrobiotechnology, Colle
  • Xu J; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China.
  • Xia G; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; State Key Laboratory of Agrobiotechnology, Colle
  • Yang Y; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China. Electronic address: yangyi@nxu.edu.cn.
J Proteomics ; 272: 104772, 2023 02 10.
Article em En | MEDLINE | ID: mdl-36414229
ABSTRACT
Early ovarian follicular development is regulated by multiple proteins and signaling pathways, including the Wnt gene. To explore the regulatory mechanism of Wnt signaling on early ovarian follicular development, ovaries from 17.5 days post coitum (17.5 dpc) mice were collected and cultured in vitro for four days in the presence of IWP2 as a Wnt activity inhibitor and KN93 as a CaMKII inhibitor. LFQ proteomics technique was then used to analyze the significant differentially abundant (P-SDA) 93 and 262 proteins in the IWP2 and KN93 groups, respectively. Of these, 63 up-regulated proteins and 30 down-regulated proteins were identified for IWP2, along with 3 significant KEGG pathways (P < 0.05). For the KN93 group, 168 up-regulated proteins and 94 down-regulated ones were P-SDA, with 9 significant KEGG pathways also noted (P < 0.05). In both IWP2 and KN93 groups, key pathways (Wnt signaling pathway, Notch signaling pathway, P53 signaling pathway, TGF-ß signaling pathway, ovarian steroid production) and metabolic regulation (energy metabolism, metal ion metabolism) were found to be related to early ovarian follicular development. Finally, western blotting demonstrated the regulatory role of Wnt/P53/Caspase3 signaling pathway in mouse ovarian development. These results contribute new knowledge to the understanding of regulatory factors of early ovarian follicular development.

SIGNIFICANCE:

In this study, label-free quantification (LFQ) was used in combination with liquid chromatography-mass spectrometer (LC-MS/MS) to study potential changes in the proteomic profiles of embryonic mice subjected to Wnt inhibitor IWP2 and CaMKIIinhibitor KN93. In addition, bioinformatics and comparative analyses were performed using publicly available proteomics databases to further explore the underlying mechanisms associated with early mouse ovarian growth and development.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteína Supressora de Tumor p53 / Proteômica Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteína Supressora de Tumor p53 / Proteômica Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article