Your browser doesn't support javascript.
loading
Preparation, in vitro and in vivo evaluation of pinocembrin-loaded TPGS modified liposomes with enhanced bioavailability and antihyperglycemic activity.
Shen, Xinyi; Rong, Wanjing; Adu-Frimpong, Michael; He, Qing; Li, Xiaoxiao; Shi, Feng; Ji, Hao; Toreniyazov, Elmurat; Xia, Xiaoli; Zhang, Jian; Wang, Qilong; Yu, Jiangnan; Xu, Ximing.
Afiliação
  • Shen X; Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China.
  • Rong W; Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China.
  • Adu-Frimpong M; Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana.
  • He Q; Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China.
  • Li X; Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China.
  • Shi F; Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China.
  • Ji H; Jiangsu Tian Sheng Pharmaceutical Co., Ltd., Zhenjiang, China.
  • Toreniyazov E; Tashkent State Agricultural University (Nukus Branch), Nukus, Uzbekistan.
  • Xia X; Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China.
  • Zhang J; Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China.
  • Wang Q; Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China.
  • Yu J; Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China.
  • Xu X; Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China.
Drug Dev Ind Pharm ; 48(11): 623-634, 2022 Nov.
Article em En | MEDLINE | ID: mdl-36420780
ABSTRACT

PURPOSE:

To prepare polyethylene glycol succinate-vitamin E modified pinocembrin (PCB)-loaded liposomes (PCBT-liposomes) and evaluate PCBT-liposomal pharmacokinetics and antihyperglycemic activity.

SIGNIFICANCE:

The novel PCBT-liposomes demonstrated a promising application prospect as a nano drug carrier for future research.

METHODS:

Thin film dispersion was used to prepare PCBT-liposomes. We measured a series of characterization, followed by in vitro cumulative release, in vivo pharmacokinetic study, and antihyperglycemic activity evaluation.

RESULTS:

PCBT-liposomes displayed spherical and bilayered nanoparticles with mean particle size (roughly 92 nm), negative zeta potential (about -26.650 mV), high drug encapsulation efficiency (87.32 ± 1.34%) and good storage (at 4 or 25 °C) stability during 48 h after hydration. The cumulative release rate of PCBT-liposomes was markedly higher than free PCB in four different pH media. In vivo investigation showed that PCBT-liposomes could obviously improve oral bioavailability of PCB by 1.96 times, whereas the Cmax, MRT0-t, and T1/2 of PCBT-liposomes were roughly 1.700 ± 0.139 µg·mL-1, 12.695 ± 1.647 h, and 14.244 h, respectively. In terms of biochemical analysis, aspartate amino-transferase (AST), alanine amino-transferase (ALT), interleukin-1 (IL-1), and tumor necrosis factor-α (TNF-α) concentrations in serum of diabetic mice were respectively decreased 28.28%, 17.23%, 17.77%, and 8.08% after PCBT-liposomal treatment.

CONCLUSION:

These results show PCBT-liposomal preparation as an excellent nano-carrier which has the potential to improve water solubility, bioavailability, and antihyperglycemic activity of PCB, amid broadening the application of PCB in the clinical settings.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Experimental / Lipossomos Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Experimental / Lipossomos Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article