Hsa_circ_0000129 drives tumor growth via sequestering miR-485-3p and upregulating SPIN1 in breast cancer.
J Biochem Mol Toxicol
; 37(2): e23254, 2023 Feb.
Article
em En
| MEDLINE
| ID: mdl-36426627
BACKGROUND: Breast cancer (BC) is second cancer frequently occurring worldwide. Circular RNA hsa_circ_0000129 (circ_0000129) exerts a tumor-promoting effect in BC. Nevertheless, the molecular mechanisms mediated by the upregulation of circ_0000129 during BC progression are not well understood. METHODS: Forty-five BC patients were recruited for the research. Changes in circ_0000129 levels were detected with quantitative reverse transcription-polymerase chain reaction. Cell proliferation, apoptosis, migration, invasion, and angiopoiesis were determined by cell counting, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and tube formation assays. Protein levels were detected by western blot analysis. The regulatory mechanism of circ_0000129 was predicted by bioinformatics analysis and validated by dual-luciferase reporter and RNA immunoprecipitation assays. In vivo experiments were carried out to verify the function of circ_0000129. RESULTS: Circ_0000129 was overexpressed in BC samples and cell lines. Functionally, circ_0000129 silencing reduced cell proliferation, migration, invasion, and promoted cell apoptosis, as well as induced HUVEC angiopoiesis in vitro. Furthermore, circ_0000129 knockdown decreased BC cell growth in mouse xenograft models. Mechanically, circ_0000129 interacted with miR-485-3p to mediate the inhibiting effect of miR-485-3p on SPIN1. Silenced miR-485-3p expression weakened the inhibiting effect of circ_0000129 knockdown on BC cell malignant behaviors. Also, forced SPIN1 expression weakened miR-485-3p upregulation mediated effects on BC cell malignant behaviors. CONCLUSION: Circ_0000129 acted as a miR-485-3p sponge molecular to mediate expression, thus promoting BC progression.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neoplasias da Mama
/
Neoplasias Mamárias Animais
/
MicroRNAs
Tipo de estudo:
Prognostic_studies
Limite:
Animals
/
Female
/
Humans
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article