Your browser doesn't support javascript.
loading
Injectable Cell-Laden Nanofibrous Matrix for Treating Annulus Fibrosus Defects in Porcine Model: An Organ Culture Study.
Roebke, Evan; Jacho, Diego; Eby, Oliver; Aldoohan, Sulaiman; Elsamaloty, Haitham; Yildirim-Ayan, Eda.
Afiliação
  • Roebke E; Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA.
  • Jacho D; Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA.
  • Eby O; Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA.
  • Aldoohan S; Department of Radiology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA.
  • Elsamaloty H; Department of Radiology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA.
  • Yildirim-Ayan E; Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA.
Life (Basel) ; 12(11)2022 Nov 12.
Article em En | MEDLINE | ID: mdl-36431001
ABSTRACT
Lower back pain commonly arises from intervertebral disc (IVD) failure, often caused by deteriorating annulus fibrosus (AF) and/or nucleus pulposus (NP) tissue. High socioeconomic cost, quality of life issues, and unsatisfactory surgical options motivate the rapid development of non-invasive, regenerative repair strategies for lower back pain. This study aims to evaluate the AF regenerative capacity of injectable matrix repair strategy in ex vivo porcine organ culturing using collagen type-I and polycaprolactone nanofibers (PNCOL) with encapsulated fibroblast cells. Upon 14 days organ culturing, the porcine IVDs were assessed using gross optical imaging, magnetic resonance imaging (MRI), histological analysis, and Reverse Transcriptase quantitative PCR (RT-qPCR) to determine the regenerative capabilities of the PNCOL matrix at the AF injury. PNCOL-treated AF defects demonstrated a full recovery with increased gene expressions of AF extracellular matrix markers, including Collagen-I, Aggrecan, Scleraxis, and Tenascin, along with anti-inflammatory markers such as CD206 and IL10. The PNCOL treatment effectively regenerates the AF tissue at the injury site contributing to decreased herniation risk and improved surgical outcomes, thus providing effective non-invasive strategies for treating IVD injuries.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article