Your browser doesn't support javascript.
loading
Retention Secured Nonlinear and Self-Rectifying Analog Charge Trap Memristor for Energy-Efficient Neuromorphic Hardware.
Kim, Geunyoung; Son, Seoil; Song, Hanchan; Jeon, Jae Bum; Lee, Jiyun; Cheong, Woon Hyung; Choi, Shinhyun; Kim, Kyung Min.
Afiliação
  • Kim G; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
  • Son S; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
  • Song H; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
  • Jeon JB; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
  • Lee J; Semiconductor Research & Development (SRD), Samsung Electronics, Hwaseong, 18448, Republic of Korea.
  • Cheong WH; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
  • Choi S; The School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
  • Kim KM; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Adv Sci (Weinh) ; 10(3): e2205654, 2023 Jan.
Article em En | MEDLINE | ID: mdl-36437042
A memristive crossbar array (MCA) is an ideal platform for emerging memory and neuromorphic hardware due to its high bitwise density capability. A charge trap memristor (CTM) is an attractive candidate for the memristor cell of the MCA, because the embodied rectifying characteristic frees it from the sneak current issue. Although the potential of the CTM devices has been suggested, their practical viability needs to be further proved. Here, a Pt/Ta2 O5 /Nb2 O5- x /Al2 O3- y /Ti CTM stack exhibiting high retention and array-level uniformity is proposed, allowing a highly reliable selector-less MCA. It shows high self-rectifying and nonlinear current-voltage characteristics below 1 µA of programming current with a continuous analog switching behavior. Also, its retention is longer than 105 s at 150 °C, suggesting the device is highly stable for non-volatile analog applications. A plausible band diagram model is proposed based on the electronic spectroscopy results and conduction mechanism analysis. The self-rectifying and nonlinear characteristics allow reducing the on-chip training energy consumption by 71% for the MNIST dataset training task with an optimized programming scheme.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article