Your browser doesn't support javascript.
loading
Environmentally Stable, Stretchable, Adhesive, and Conductive Organohydrogels with Multiple Dynamic Interactions as High-Performance Strain and Temperature Sensors.
Rong, Liduo; Zhao, Wei; Fan, Yu; Zhou, Zixuan; Zhan, Meixiao; He, Xu; Yuan, Weizhong; Qian, Chunhua.
Afiliação
  • Rong L; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China.
  • Zhao W; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China.
  • Fan Y; School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China.
  • Zhou Z; School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China.
  • Zhan M; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China.
  • He X; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China.
  • Yuan W; School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China.
  • Qian C; Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai200072, P. R. China.
ACS Appl Mater Interfaces ; 14(49): 55075-55087, 2022 Dec 14.
Article em En | MEDLINE | ID: mdl-36455289
ABSTRACT
Nowadays, with the rapid development of artificial intelligence, conductive hydrogel-based sensors play an increasingly vital role in health monitoring and temperature sensing. However, the perfect integration of the environmental stability and applied performance of the hydrogel has always been a challenging and significant problem. Herein, we report an environmentally tolerant, stretchable, adhesive, self-healing conductive gel through multiple dynamic interactions in the water/glycerol/ionic liquids medium, which can be used as a high-performance strain and temperature sensor. The random copolymer poly(acrylic acid-co-acetoacetoxyethyl methacrylate) interacts with the branched poly(ethylene imine) (PEI) and Zr4+ ions via the dynamic covalent enamine bonds, coordinations, and electrostatic interactions to improve stretchable (1300%), compressible, fatigue-resistant (1000 cycles at 50% strain), and self-healing performance (95%, 24 h). The combination of water/glycerol/ionic liquids imparts the resulting gel with excellent electrical conductivity, anti-drying, and anti-freezing performance. By means of the above excellent performance, the gel could be used as the flexible strain or pressure sensor with high sensitivity and stability for the detection of the movement, expression, handwriting, pronouncing, and electrocardiogram (ECG) signals in various models. Meanwhile, the resulting gel can be assembled as the temperature sensor to trace the change of temperature accurately and steadily, which has a wide operating window (0 to 100 °C), an ultralow detection limit (0.2 °C), and high sensitivity (2.1% °C-1). It is believed that the strategy for the multifunction and high-performance gel will blaze a new trail for the smart device in health management, temperature detection, and information transmission under various environmental conditions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article