Your browser doesn't support javascript.
loading
Intravital Microscopy Reveals Unforeseen Biodistribution Within the Liver and Kidney Mechanistically Connected to the Clearance of a Bifunctional Antibody.
Datta-Mannan, Amita; Molitoris, Bruce A; Feng, Yiqing; Martinez, Michelle M; Sandoval, Ruben M; Brown, Robin M; Merkel, Daniel; Croy, Johnny E; Dunn, Kenneth W.
Afiliação
  • Datta-Mannan A; Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis
  • Molitoris BA; Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis
  • Feng Y; Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis
  • Martinez MM; Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis
  • Sandoval RM; Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis
  • Brown RM; Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis
  • Merkel D; Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis
  • Croy JE; Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis
  • Dunn KW; Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis
Drug Metab Dispos ; 51(3): 403-412, 2023 03.
Article em En | MEDLINE | ID: mdl-36460476
Bifunctional antibody (BfAb) therapeutics offer the potential for novel functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including changes in pharmacokinetics that limit the compound's therapeutic profile. A better understanding of how molecular modifications affect in vivo tissue interactions could help inform BfAb design. The present studies were predicated on the observation that a BfAb designed to have minimal off-target interactions cleared from the circulation twice as fast as the monoclonal antibody (mAb) from which it was derived. The present study leverages the spatial and temporal resolution of intravital microscopy (IVM) to identify cellular interactions that may explain the different pharmacokinetics of the two compounds. Disposition studies of mice demonstrated that radiolabeled compounds distributed similarly over the first 24 hours, except that BfAb accumulated approximately two- to -three times more than mAb in the liver. IVM studies of mice demonstrated that both distributed to endosomes of liver endothelia but with different kinetics. Whereas mAb accumulated rapidly within the first hour of administration, BfAb accumulated only modestly during the first hour but continued to accumulate over 24 hours, ultimately reaching levels similar to those of the mAb. Although neither compound was freely filtered by the mouse or rat kidney, BfAb, but not mAb, was found to accumulate over 24 hours in endosomes of proximal tubule cells. These studies demonstrate how IVM can be used as a tool in drug design, revealing unpredicted cellular interactions that are undetectable by conventional analyses. SIGNIFICANCE STATEMENT: Bifunctional antibodies offer novel therapeutic functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including undesirable changes in pharmacokinetics. Studies of the dynamic distribution of a bifunctional antibody and its parent monoclonal antibody presented here demonstrate how intravital microscopy can expand our understanding of the in vivo disposition of therapeutics, detecting off-target interactions that could not be detected by conventional pharmacokinetics approaches or predicted by conventional physicochemical analyses.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fígado / Anticorpos Monoclonais Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fígado / Anticorpos Monoclonais Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article