Your browser doesn't support javascript.
loading
Nascent peptide-induced translation discontinuation in eukaryotes impacts biased amino acid usage in proteomes.
Ito, Yosuke; Chadani, Yuhei; Niwa, Tatsuya; Yamakawa, Ayako; Machida, Kodai; Imataka, Hiroaki; Taguchi, Hideki.
Afiliação
  • Ito Y; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
  • Chadani Y; Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan. ychadani@bio.titech.ac.jp.
  • Niwa T; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
  • Yamakawa A; Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
  • Machida K; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
  • Imataka H; Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, 671-2280, Japan.
  • Taguchi H; Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, 671-2280, Japan.
Nat Commun ; 13(1): 7451, 2022 12 02.
Article em En | MEDLINE | ID: mdl-36460666
Robust translation elongation of any given amino acid sequence is required to shape proteomes. Nevertheless, nascent peptides occasionally destabilize ribosomes, since consecutive negatively charged residues in bacterial nascent chains can stochastically induce discontinuation of translation, in a phenomenon termed intrinsic ribosome destabilization (IRD). Here, using budding yeast and a human factor-based reconstituted translation system, we show that IRD also occurs in eukaryotic translation. Nascent chains enriched in aspartic acid (D) or glutamic acid (E) in their N-terminal regions alter canonical ribosome dynamics, stochastically aborting translation. Although eukaryotic ribosomes are more robust to ensure uninterrupted translation, we find many endogenous D/E-rich peptidyl-tRNAs in the N-terminal regions in cells lacking a peptidyl-tRNA hydrolase, indicating that the translation of the N-terminal D/E-rich sequences poses an inherent risk of failure. Indeed, a bioinformatics analysis reveals that the N-terminal regions of ORFs lack D/E enrichment, implying that the translation defect partly restricts the overall amino acid usage in proteomes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteoma / Aminoácidos Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteoma / Aminoácidos Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article