Your browser doesn't support javascript.
loading
Performance evaluation of the balanced force field ff03CMAP for intrinsically disordered and ordered proteins.
Jiang, Yuxin; Chen, Hai-Feng.
Afiliação
  • Jiang Y; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. haifengchen@sjtu.edu.cn.
  • Chen HF; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. haifengchen@sjtu.edu.cn.
Phys Chem Chem Phys ; 24(48): 29870-29881, 2022 Dec 14.
Article em En | MEDLINE | ID: mdl-36468450
ABSTRACT
Intrinsically disordered proteins (IDPs) have been found to be closely associated with various human diseases. Because IDPs have no fixed tertiary structure under physiological conditions, current experimental methods, such as X-ray spectroscopy, NMR, and CryoEM, cannot capture all the dynamic conformations. Molecular dynamics simulation is an useful tool that is widely used to study the conformer distributions of IDPs and has become an important complementary tool for experimental methods. However, the accuracy of MD simulations directly depends on utilizing a precise force field. Recently a CMAP optimized force field based on the Amber ff03 force field (termed ff03CMAP herein) was developed for a balanced sampling of IDPs and folded proteins. In order to further evaluate the performance, more types of disordered and ordered proteins were used to test the ability for conformer sampling. The results showed that simulated chemical shifts, J-coupling, and Rg distribution with the ff03CMAP force field were in better agreement with NMR measurements and were more accurate than those with the ff03 force field. The sampling conformations by ff03CMAP were more diverse than those of ff03. At the same time, ff03CMAP could stabilize the conformers of the ordered proteins. These findings indicate that ff03CMAP can be widely used to sample diverse conformers for proteins, including the intrinsically disordered regions.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Intrinsicamente Desordenadas Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Intrinsicamente Desordenadas Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article