Your browser doesn't support javascript.
loading
Synergistic inhibition of Pseudomonas fluorescens growth and proteases activities via sodium chlorite-based oxyhalogen.
Abolmaaty, Assem; Abdelkader, Reham M M; Amin, Dina H.
Afiliação
  • Abolmaaty A; Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
  • Abdelkader RMM; Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
  • Amin DH; Department of Microbiology, Faculty of Science, Ain Shams University, Abbasiya, Cairo, 11566, Egypt. dina.hatem@sci.asu.edu.eg.
World J Microbiol Biotechnol ; 39(1): 33, 2022 Dec 05.
Article em En | MEDLINE | ID: mdl-36469174
ABSTRACT
Pseudomonas fluorescens is considered among the main spoilage microorganisms due to its ability to produce proteases. Food deterioration caused by spoilage microorganisms has a major impact on food quality and the environment. The inactivation of Pseudomonas fluorescens growth and protease production was intensively investigated with the use of Salmide®, A Sodium Chlorite-Based Oxy-halogen Disinfectant. A unique M9 media was also developed to assure sufficient protease productions with different mutants of Pseudomonas fluorescens as a microbioreactor. Mutations were induced by classical whole-cell mutagenesis using N-methyl-N'- nitro-N-nitrosoguanidine (NTG). A dramatic decrease occurred in protease activity when different Salmide concentrations (5, 10, and 15 ppm) were added to the growth culture followed by a complete inhibition concentration (20, 25, 50, and 100 ppm) of Salmide. However, no significant inhibition occurred once it is secreted out of cells. Some mutants were resistant and remains highly stable with high protease production under stressful conditions of Sodium Chlorite-Based Oxy-halogen. The production of the protease showed a linear correlation with the increase in incubation time using a continuous culture bioreactor system and recorded maximum protease activity after 40 h. Our findings would offer alternative antimicrobial procedures for food and industrial sectors.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudomonas fluorescens Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudomonas fluorescens Idioma: En Ano de publicação: 2022 Tipo de documento: Article