Your browser doesn't support javascript.
loading
2D honeycomb transformation into dodecagonal quasicrystals driven by electrostatic forces.
Schenk, Sebastian; Krahn, Oliver; Cockayne, Eric; Meyerheim, Holger L; de Boissieu, Marc; Förster, Stefan; Widdra, Wolf.
Afiliação
  • Schenk S; Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, 06099, Halle, Germany.
  • Krahn O; Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, 06099, Halle, Germany.
  • Cockayne E; Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
  • Meyerheim HL; Max Planck Institute of Microstructure Physics, 06120, Halle, Germany.
  • de Boissieu M; Universite Grenoble Alpes, CNRS, SIMaP, St Martin d'Heres, France.
  • Förster S; Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, 06099, Halle, Germany. stefan.foerster@physik.uni-halle.de.
  • Widdra W; Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, 06099, Halle, Germany.
Nat Commun ; 13(1): 7542, 2022 Dec 07.
Article em En | MEDLINE | ID: mdl-36477452
ABSTRACT
Dodecagonal oxide quasicrystals are well established as examples of long-range aperiodic order in two dimensions. However, despite investigations by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), low-energy electron microscopy (LEEM), photoemission spectroscopy as well as density functional theory (DFT), their structure is still controversial. Furthermore, the principles that guide the formation of quasicrystals (QCs) in oxides are elusive since the principles that are known to drive metallic QCs are expected to fail for oxides. Here we demonstrate the solution of the oxide QC structure by synchrotron-radiation based surface x-ray diffraction (SXRD) refinement of its largest-known approximant. The oxide QC formation is forced by large alkaline earth metal atoms and the reduction of their mutual electrostatic repulsion. It drives the n = 6 structure of the 2D Ti2O3 honeycomb arrangement via Stone-Wales transformations into an ordered structure with empty n = 4, singly occupied n = 7 and doubly occupied n = 10 rings, as supported by DFT.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article