Your browser doesn't support javascript.
loading
Isobaric labeling-based quantitative proteomics of FACS-purified immune cells and epithelial cells from the intestine of Crohn's disease patients reveals proteome changes of potential importance in disease pathogenesis.
Alfredsson, Johannes; Fabrik, Ivo; Gorreja, Frida; Caër, Charles; Sihlbom, Carina; Block, Mattias; Börjesson, Lars G; Lindskog, Elinor Bexe; Wick, Mary Jo.
Afiliação
  • Alfredsson J; Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
  • Fabrik I; Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
  • Gorreja F; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
  • Caër C; Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
  • Sihlbom C; Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
  • Block M; Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
  • Börjesson LG; Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden.
  • Lindskog EB; Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden.
  • Wick MJ; Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden.
Proteomics ; 23(5): e2200366, 2023 03.
Article em En | MEDLINE | ID: mdl-36479858
ABSTRACT
Crohn's disease (CD) is a chronic condition characterized by recurrent flares of inflammation in the gastrointestinal tract. Disease etiology is poorly understood and is characterized by dysregulated immune activation that progressively destroys intestinal tissue. Key cellular compartments in disease pathogenesis are the intestinal epithelial layer and its underlying lamina propria. While the epithelium contains predominantly epithelial cells, the lamina propria is enriched in immune cells. Deciphering proteome changes in different cell populations is important to understand CD pathogenesis. Here, using isobaric labeling-based quantitative proteomics, we perform an exploratory study to analyze in-depth proteome changes in epithelial cells, immune cells and stromal cells in CD patients compared to controls using cells purified by FACS. Our study revealed increased proteins associated with neutrophil degranulation and mitochondrial metabolism in immune cells of CD intestinal mucosa. We also found upregulation of proteins involved in glycosylation and secretory pathways in epithelial cells of CD patients, while proteins involved in mitochondrial metabolism were reduced. The distinct alterations in protein levels in immune- versus epithelial cells underscores the utility of proteome analysis of defined cell types. Moreover, our workflow allowing concomitant assessment of cell-type specific changes on an individual basis enables deeper insight into disease pathogenesis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Crohn Tipo de estudo: Etiology_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Crohn Tipo de estudo: Etiology_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article