Your browser doesn't support javascript.
loading
Anisotropic dense collagen hydrogels with two ranges of porosity to mimic the skeletal muscle extracellular matrix.
Camman, Marie; Joanne, Pierre; Brun, Julie; Marcellan, Alba; Dumont, Julien; Agbulut, Onnik; Hélary, Christophe.
Afiliação
  • Camman M; Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France; Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, UMR 8256, Inserm U1164, Biological Adaptation and Ageing, F-75005, Paris, France.
  • Joanne P; Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, UMR 8256, Inserm U1164, Biological Adaptation and Ageing, F-75005, Paris, France.
  • Brun J; Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, CNRS, Sorbonne Université, F-75005, Paris, France.
  • Marcellan A; Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, CNRS, Sorbonne Université, F-75005, Paris, France.
  • Dumont J; CIRB Microscopy facility, Collège de France, CNRS, UMR 7241, Inserm U1050, F-75005, Paris, France.
  • Agbulut O; Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, UMR 8256, Inserm U1164, Biological Adaptation and Ageing, F-75005, Paris, France. Electronic address: onnik.agbulut@sorbonne-universite.fr.
  • Hélary C; Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France. Electronic address: christophe.helary@sorbonne-universite.fr.
Biomater Adv ; 144: 213219, 2023 Jan.
Article em En | MEDLINE | ID: mdl-36481519
ABSTRACT
Despite the crucial role of the extracellular matrix (ECM) in the organotypic organization and function of skeletal muscles, most 3D models do not mimic its specific characteristics, namely its biochemical composition, stiffness, anisotropy, and porosity. Here, a novel 3D in vitro model of muscle ECM was developed reproducing these four crucial characteristics of the native ECM. An anisotropic hydrogel mimicking the muscle fascia was obtained thanks to unidirectional 3D printing of dense collagen with aligned collagen fibrils. The space between the different layers was tuned to generate an intrinsic network of pores (100 µm) suitable for nutrient and oxygen diffusion. By modulating the gelling conditions, the mechanical properties of the construct reached those measured in the physiological muscle ECM. This artificial matrix was thus evaluated for myoblast differentiation. The addition of large channels (600 µm) by molding permitted to create a second range of porosity suitable for cell colonization without altering the physical properties of the hydrogel. Skeletal myoblasts embedded in Matrigel®, seeded within the channels, organized in 3D, and differentiated into multinucleated myotubes. These results show that porous and anisotropic dense collagen hydrogels are promising biomaterials to model skeletal muscle ECM.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Colágeno / Hidrogéis Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Colágeno / Hidrogéis Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article