Your browser doesn't support javascript.
loading
Attenuating Metabolic Competition of Tumor Cells for Favoring the Nutritional Demand of Immune Cells by a Branched Polymeric Drug Delivery System.
Li, Yinggang; Duan, Zhenyu; Pan, Dayi; Ren, Long; Gu, Lei; Li, Xiaoling; Xu, Gang; Zhu, Hongyan; Zhang, Hu; Gu, Zhongwei; Chen, Rongjun; Gong, Qiyong; Wu, Yao; Luo, Kui.
Afiliação
  • Li Y; Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China.
  • Duan Z; Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China.
  • Pan D; Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China.
  • Ren L; Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China.
  • Gu L; Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China.
  • Li X; Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China.
  • Xu G; Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China.
  • Zhu H; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
  • Zhang H; Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China.
  • Gu Z; Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA.
  • Chen R; Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China.
  • Gong Q; Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
  • Wu Y; Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China.
  • Luo K; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
Adv Mater ; 35(11): e2210161, 2023 Mar.
Article em En | MEDLINE | ID: mdl-36504170
ABSTRACT
Tumor cells are dominant in the nutritional competition in the tumor microenvironment, and their metabolic abnormalities often lead to microenvironmental acidosis and nutrient deprivation, thereby impairing the function of immune cells and diminishing the antitumor therapeutic effect. Herein, a branched polymeric conjugate and its efficacy in attenuating the metabolic competition of tumor cells are reported. Compared with the control nanoparticles prepared from its linear counterpart, the branched-conjugate-based nanoparticles can more efficiently accumulate in the tumor tissue and interfere with the metabolic processes of tumor cells to increase the concentration of essential nutrients and reduce the level of immunosuppressive metabolites in the TME, thus creating a favorable environment for infiltrated immune cells. Its combined treatment with an immune checkpoint inhibitor (ICI) achieves an enhanced antitumor effect. The work presents a promising approach for targeting metabolic competition in the TME to enhance the chemo-immunotherapeutic effect against cancers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imunoterapia / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imunoterapia / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article