Your browser doesn't support javascript.
loading
Distinct promotor methylation at tumor suppressive genes in ovarian cancer stromal progenitor cells and ovarian cancer and its clinical implication.
Ho, Chih-Ming; Yen, Ting-Lin; Chien, Tsai-Yen; Huang, Shih-Hung.
Afiliação
  • Ho CM; Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital Taipei, Taiwan.
  • Yen TL; School of Medicine, Fu Jen Catholic University Hsinchuang, New Taipei City, Taiwan.
  • Chien TY; Department of Medical Research, Cathay General Hospital New Taipei City, Taiwan.
  • Huang SH; Department of Medical Research, Cathay General Hospital New Taipei City, Taiwan.
Am J Cancer Res ; 12(11): 5325-5341, 2022.
Article em En | MEDLINE | ID: mdl-36504889
ABSTRACT
Aberrant CpG-island methylation affects ovarian cancer progression. The promotor methylation changes at tumor suppressive genes in ovarian cancer stromal progenitor cells (OCSPCs) and epithelial ovarian cancer (EOC) tissues and their clinical implication remains unexplored. We systemically analyzed the promoter methylation status of 40 tumor suppressor genes (TSGs) associated with cancer in paired epithelial-like and mesenchymal-like OCSPCs and ovarian cancer cells by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The effect of DNA methylation on gene expression was confirmed using qRT-PCR. The differential frequencies of TSGs' promoter methylation among matched epithelial-like or mesenchymal-like OCSPCs from tissues and ascites and ovarian cancer tissues were further validated in cancer tissues and correlated with clinicopathological features and survival outcomes of patients. According to the promoter methylation frequencies of the 40 TSGs, promoters of RASSF1A were the only significantly hypomethylated in epithelial-like OCSPCs from tissues than those from ascites and bulk tumor cells (0% vs 38% vs 45%, P=0.039 by Fisher's exact test). The most frequencies at promotor hypermethylation of TSGs in mesenchymal-like OCSPCs from ascites which processed aggressiveness were CDKN2B (73%) followed by CCND2 (45%) and RASSF1A (45%). Forty-three percent (47/110) of RASSF1A and 45% of CCND2 were validated as a frequently hypermethylated gene in an independent set of 110 EOC tissues in contrast to none (0/60) and 12% (10/60) of benign ovarian cysts (both P<0.001). Functional experiments revealed overexpression of CCND2 or CDKN2B in MSc-OCSPCs decreases EMT, invasion, and spheroid formation in EOC, and abolishes DNMT1 and COL6A3 expression. However, for the expected 5-year overall survival (OS) for patients with methylated RASSF1A, CCND2, and CDKN2B, only RASSF1A was significantly worse than those without methylated RASSF1A (56% vs 80%, p=0.022). Taken together, overexpression of CCND2 and CDKN2B decreased the aggressiveness of mesenchymal-like OCSPCs from ascites which may represent a potential therapeutic target for EOC. Promotor hypomethylation at RASSF1A in OCSPCs from EOC tissues and changes to hypermethylation of EOC and OCSPCs from ascites could predict poor survival outcomes for EOC patients compared to without those changes of CCND2 and CDKN2B.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article