Titration Mass Spectroscopy (TMS): A Quantitative Analytical Technology for Rechargeable Batteries.
Nano Lett
; 22(24): 9972-9981, 2022 Dec 28.
Article
em En
| MEDLINE
| ID: mdl-36512422
Development of high-energy-density rechargeable battery systems not only needs advanced qualitative characterizations for mechanism exploration but also requires accurate quantification technology to quantitatively elucidate products and fairly assess numerous modification strategies. Herein, as a reliable quantification technology, titration mass spectroscopy (TMS) is developed to accurately quantify O-related anionic redox reactions (Li-O2 battery and nickel-cobalt-manganese (NCM)/Li-rich cathodes), parasitic carbonate deposition and decomposition (derived from air-exposure degradation and electrolyte oxidation), and dead Li0 formation (Li-metal battery and over-discharged graphite anode). TMS technology can harvest key information on products (e.g., quantification of oxidized lattice oxygen and solid electrolyte interphase (SEI)/cathode electrolyte interphase (CEI) components) and guide corresponding design strategy by enhancing understanding of the mechanism (e.g., clearly distinguish the catalytic target of highly oxidative Ni4+ on the NCM cathode). Not limited as a rigid quantification tool for widely known products/mechanisms, TMS technology has been demonstrated as a powerful and versatile tool for the investigations of advanced batteries.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Qualitative_research
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article