Your browser doesn't support javascript.
loading
Altered microbial P cycling genes drive P availability in soil after afforestation.
Zhi, Ruochen; Deng, Jian; Xu, Yuling; Xu, Miaoping; Zhang, Shuohong; Han, Xinhui; Yang, Gaihe; Ren, Chengjie.
Afiliação
  • Zhi R; College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, 712100, Shaanxi, China.
  • Deng J; College of Life Sciences, Yan'an University, Yan'an, 716000, China.
  • Xu Y; College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, 712100, Shaanxi, China.
  • Xu M; College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
  • Zhang S; College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, 712100, Shaanxi, China.
  • Han X; College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, 712100, Shaanxi, China.
  • Yang G; College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, 712100, Shaanxi, China.
  • Ren C; College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, 712100, Shaanxi, China. Electronic address: rencj1991@nwafu.edu.cn.
J Environ Manage ; 328: 116998, 2023 Feb 15.
Article em En | MEDLINE | ID: mdl-36516705
Soil Phosphorous (P) availability is a limiting factor for plant growth and regulates biological metabolism in plantation ecosystems. The effect of variations in soil microbial P cycling potential on the availability of soil P during succession in plantation ecosystems is unclear. In this study, a metagenomics approach was used to explore variations in the composition and diversity of microbial P genes along a 45-year recovery sequence of Robinia pseudoacacia on the Loess Plateau, as well soil properties were measured. Our results showed that the diversity of P cycling genes (inorganic P solubilization and organic P mineralization genes) increased significantly after afforestation, and the community composition showed clear differences. The gcd and ppx genes were dominant in inorganic P transformation, whereas phnM gene dominated the transformation of organic P. The abundance of genes involved in inorganic P solubilization and organic P mineralization was significantly positively correlated with P availability, particularly for phnM, gcd, ppx, and phnI genes, corresponding to the phyla Gemmatimonadetes, Acidobacteria, Bacteroidetes, and Planctomycetes. The critical drivers of the microbial main genes of soil P cycling were available P (AP) and total N (TN) in soil. Overall, these findings highlight afforestation-induced increases in microbial P cycling genes enhanced soil P availability. and help to better understand how microbial growth metabolism caused by vegetation restoration in ecologically fragile areas affects the soil P cycling.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ecossistema / Robinia País/Região como assunto: Asia Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ecossistema / Robinia País/Região como assunto: Asia Idioma: En Ano de publicação: 2023 Tipo de documento: Article