Your browser doesn't support javascript.
loading
Quantification of gas-accessible microporosity in metal-organic framework glasses.
Frentzel-Beyme, Louis; Kolodzeiski, Pascal; Weiß, Jan-Benedikt; Schneemann, Andreas; Henke, Sebastian.
Afiliação
  • Frentzel-Beyme L; Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany.
  • Kolodzeiski P; Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany.
  • Weiß JB; Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany.
  • Schneemann A; Anorganische Chemie I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany.
  • Henke S; Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany. sebastian.henke@tu-dortmund.de.
Nat Commun ; 13(1): 7750, 2022 Dec 14.
Article em En | MEDLINE | ID: mdl-36517486
ABSTRACT
Metal-organic framework (MOF) glasses are a new class of glass materials with immense potential for applications ranging from gas separation to optics and solid electrolytes. Due to the inherent difficulty to determine the atomistic structure of amorphous glasses, the intrinsic structural porosity of MOF glasses is only poorly understood. Here, we investigate the porosity features (pore size and pore limiting diameter) of a series of prototypical MOF glass formers from the family of zeolitic imidazolate frameworks (ZIFs) and their corresponding glasses. CO2 sorption at 195 K allows quantifying the microporosity of these materials in their crystalline and glassy states, also providing excess to the micropore volume and the apparent density of the ZIF glasses. Additional hydrocarbon sorption data together with X-ray total scattering experiments prove that the porosity features of the ZIF glasses depend on the types of organic linkers. This allows formulating design principles for a targeted tuning of the intrinsic microporosity of MOF glasses. These principles are counterintuitive and contrary to those established for crystalline MOFs but show similarities to strategies previously developed for porous polymers.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article