Your browser doesn't support javascript.
loading
Precise spatial structure impacts antimicrobial susceptibility of S. aureus in polymicrobial wound infections.
Ibberson, Carolyn B; Barraza, Juan P; Holmes, Avery L; Cao, Pengbo; Whiteley, Marvin.
Afiliação
  • Ibberson CB; School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30310.
  • Barraza JP; Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019.
  • Holmes AL; School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30310.
  • Cao P; Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019.
  • Whiteley M; School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30310.
Proc Natl Acad Sci U S A ; 119(51): e2212340119, 2022 12 20.
Article em En | MEDLINE | ID: mdl-36520668
ABSTRACT
A hallmark of microbial ecology is that interactions between members of a community shape community function. This includes microbial communities in human infections, such as chronic wounds, where interactions can result in more severe diseases. Staphylococcus aureus is the most common organism isolated from human chronic wound infections and has been shown to have both cooperative and competitive interactions with Pseudomonas aeruginosa. Still, despite considerable study, most interactions between these microbes have been characterized using in vitro well-mixed systems, which do not recapitulate the infection environment. Here, we characterized interactions between S. aureus and P. aeruginosa in chronic murine wounds, focusing on the role that both macro- and micro-scale spatial structures play in disease. We discovered that S. aureus and P. aeruginosa coexist at high cell densities in murine wounds. High-resolution imaging revealed that these microbes establish a patchy distribution, only occupying 5 to 25% of the wound volume. Using a quantitative framework, we identified a precise spatial structure at both the macro (mm)- and micro (µm)-scales, which was largely mediated by P. aeruginosa production of the antimicrobial 2-heptyl-4-hydroxyquinoline N-oxide, while the antimicrobial pyocyanin had no impact. Finally, we discovered that this precise spatial structure enhances S. aureus tolerance to aminoglycoside antibiotics but not vancomycin. Our results provide mechanistic insights into the biogeography of S. aureus and P. aeruginosa coinfected wounds and implicate spatial structure as a key determinant of antimicrobial tolerance in wound infections.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções por Pseudomonas / Infecções Estafilocócicas / Infecção dos Ferimentos / Staphylococcus aureus Resistente à Meticilina / Coinfecção Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções por Pseudomonas / Infecções Estafilocócicas / Infecção dos Ferimentos / Staphylococcus aureus Resistente à Meticilina / Coinfecção Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article