Quantum interference of multidimensional quantum states via space-division multiplexing of a long-coherent single photon from a warm 87Rb atomic ensemble.
Opt Express
; 30(24): 43534-43542, 2022 Nov 21.
Article
em En
| MEDLINE
| ID: mdl-36523049
The high-dimensional encoding of single photons can offer various possibilities for enhancing quantum information processing. This work experimentally demonstrates the quantum interference of an engineered multidimensional quantum state through the space-division multiplexing of a heralded single-photon state with a spatial light modulator (SLM) and spatial-mode mixing of a single photon through a long multimode fiber (MMF). In our experiment, the heralded single photon generated from a warm 87Rb atomic ensemble was bright, robust, and long-coherent. The multidimensional spatial quantum state of the long-coherent single photon was transported through a 4-m-long MMF and arbitrarily controlled using the SLM. We observed the quantum interference of a single-photon multidimensional spatial quantum state with a visibility of >95%. These results may have potential applications in quantum information processing, for example, in photonic variational quantum eigensolve with high-dimensional single photons and realizing high information capacity per photon for quantum communication.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article