Your browser doesn't support javascript.
loading
Differentiation of subnucleus-sized oligomers and nucleation-competent assemblies of the Aß peptide.
Pauly, Thomas; Zhang, Tao; Sternke-Hoffmann, Rebecca; Nagel-Steger, Luitgard; Willbold, Dieter.
Afiliação
  • Pauly T; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Research Center Jülich, Jülich, Germany.
  • Zhang T; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Research Center Jülich, Jülich, Germany.
  • Sternke-Hoffmann R; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
  • Nagel-Steger L; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Research Center Jülich, Jülich, Germany. Electronic address: luitgard.nagel-steger@hhu.de.
  • Willbold D; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Research Center Jülich, Jülich, Germany.
Biophys J ; 122(2): 269-278, 2023 01 17.
Article em En | MEDLINE | ID: mdl-36529991
ABSTRACT
A significant feature of Alzheimer's disease is the formation of amyloid deposits in the brain consisting mainly of misfolded derivatives of proteolytic cleavage products of the amyloid precursor protein amyloid-ß (Aß) peptide. While high-resolution structures already exist for both the monomer and the amyloid fibril of the Aß peptide, the mechanism of amyloid formation itself still defies precise characterization. In this study, low and high molecular weight oligomers (LMWOs and HMWOs) were identified by sedimentation velocity analysis, and for the first time, the temporal evolution of oligomer size distributions was correlated with the kinetics of amyloid formation as determined by thioflavin T-binding studies. LMWOs of subnucleus size contain fewer than seven monomer units and exist alongside a heterogeneous group of HMWOs with 20-160 monomer units that represent potential centers of nucleus formation due to high local monomer concentrations. These HMWOs already have slightly increased ß-strand content and appear structurally similar regardless of size, as shown by examination with a range of fluorescent dyes. Once fibril nuclei are formed, the monomer concentration begins to decrease, followed by a decrease in oligomer concentration, starting with LMWOs, which are the least stable species. The observed behavior classifies the two LMWOs as off pathway. In contrast, we consider HMWOs to be on-pathway, prefibrillar intermediates, representing structures in which nucleated conformational conversion is facilitated by high local concentrations. Aß40 and Aß42 M35ox take much longer to form nuclei and enter the growth phase than Aß42 under identical reaction conditions, presumably because both the size and the concentration of HMWOs formed are much smaller.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos beta-Amiloides / Doença de Alzheimer Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos beta-Amiloides / Doença de Alzheimer Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article