Your browser doesn't support javascript.
loading
Optimizing tri-acid mixture hydrolysis: An improved strategy for efficient xylooligosaccharides production from corncob.
Liao, Hong; Xu, Yong; Sun, Fubao Fuelbiol; Zhang, Junhua.
Afiliação
  • Liao H; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037,
  • Xu Y; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037,
  • Sun FF; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
  • Zhang J; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037,
Bioresour Technol ; 369: 128500, 2023 Feb.
Article em En | MEDLINE | ID: mdl-36535614
ABSTRACT
Propionic acid (PA) hydrolysis of corncob for xylooligosaccharides (XOS) production has the advantages of simple operation, high XOS yield and less by-products, but the high price of PA limits its application. Therefore, partially replacing PA with less expensive organic acids, such as formic acid (FA) and acetic acid (AC), may lower the cost of hydrolysis in XOS production. This work investigated the feasibility of XOS production from corncob using a tri-acid mixture of FA, AC and PA. A high XOS yield of 69.1 % was achieved under the optimal FAPAAC volume ratio of 154 at 150 °C for 50 min. Overall, in the XOS production from corncob, it was able to replace 60 % of PA with FA and AC, and decreased the hydrolysis temperature from 170 °C to 150 °C, all of which were important to lower the cost of XOS production using organic acid hydrolysis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oligossacarídeos / Zea mays Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oligossacarídeos / Zea mays Idioma: En Ano de publicação: 2023 Tipo de documento: Article