Your browser doesn't support javascript.
loading
High-Performance Electrochemiluminescence of a Coordination-Driven J-Aggregate K-PTC MOF Regulated by Metal-Phenolic Nanoparticles for Biomarker Analysis.
Fang, Jinglong; Dai, Li; Feng, Ruiqing; Wu, Dan; Ren, Xiang; Cao, Wei; Ma, Hongmin; Wei, Qin.
Afiliação
  • Fang J; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China.
  • Dai L; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China.
  • Feng R; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China.
  • Wu D; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China.
  • Ren X; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China.
  • Cao W; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China.
  • Ma H; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China.
  • Wei Q; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China.
Anal Chem ; 95(2): 1287-1293, 2023 01 17.
Article em En | MEDLINE | ID: mdl-36535709
ABSTRACT
The elimination of aggregation-caused quenching of polycyclic aromatic hydrocarbons by metal-ligand coordination is of immense scientific interest in solid-state electrochemiluminescence (ECL) sensing. Herein potassium ion (K+)-mediated J-aggregate K-PTC MOF (PTCA, perylene-3,4,9,10-tetracarboxylic) was synthesized and employed to formulate an ECL immunosensor for biomarker detection. The coordination-driven aggregates are arranged in an end-to-end side mode, which overcomes the aggregation-caused quenching related to PTCA concentration. Compared with PTCA, K-PTC MOF shows a more stable ECL emission with an unprecedented red shift to 718 nm and is equipped with ECL activity for analytical applications at a voltage of -1.1 V. Considering the requirements of accurate detection, metal-phenolic bioactive nanoparticles (MPNPs) were synthesized for the construction of a sandwich sensing platform to realize the steady-state regulation of ECL. As proof of applicability, a constructive experiment was carried out with neuron-specific enolase (NSE), a marker of small cell lung cancer (SCLC), as a targeted analyte. With optimal requirements, the configuration can provide a detection range of 10 pg/mL to 50 ng/mL and a detection limit of 7.4 pg/mL, accompanied by sufficient practical analytical performance. Collectively, this paradigm provides a deeper understanding of the ECL characteristics of coordination-driven J-aggregation and provides more possibilities for the development of ECL patterns based on luminescent metal-organic frameworks.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Nanopartículas Metálicas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Nanopartículas Metálicas Idioma: En Ano de publicação: 2023 Tipo de documento: Article