Your browser doesn't support javascript.
loading
Preparation of high temperature NH3-SCR catalysts with carbonate as precursors by ball milling method.
Wang, Na; Wang, Lei; Xie, Huidong; Liu, Yang; Sun, Yepeng; Yang, Chang; Ge, Chengmin.
Afiliação
  • Wang N; College of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 Shaanxi China wangna811221@xust.edu.cn +86-29-82202335 +86-29-82203378.
  • Wang L; College of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 Shaanxi China wangna811221@xust.edu.cn +86-29-82202335 +86-29-82203378.
  • Xie H; School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology Xi'an 710055 Shaanxi China.
  • Liu Y; College of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 Shaanxi China wangna811221@xust.edu.cn +86-29-82202335 +86-29-82203378.
  • Sun Y; College of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 Shaanxi China wangna811221@xust.edu.cn +86-29-82202335 +86-29-82203378.
  • Yang C; Engineering Comprehensive Training Center, Xi'an University of Architecture and Technology Xi'an 710055 Shaanxi China.
  • Ge C; Shandong Dongyuan New Material Technology Co., Ltd. Dongying 257300 Shandong China.
RSC Adv ; 12(54): 35094-35102, 2022 Dec 06.
Article em En | MEDLINE | ID: mdl-36540242
ABSTRACT
High-temperature 10Ce-2La/TiO2 catalysts for selective catalytic reduction of NO with NH3 were prepared by the ball milling, impregnation and co-precipitation methods and their catalytic performance was compared. The effects of different starting materials of the ball milling method on the catalytic activity were investigated. The results showed that the 10Ce-2La/TiO2 catalyst prepared by the ball milling method using carbonates as starting materials exhibited the highest NO conversion, which was more than 80% in the temperature range of 330-550 °C. The as-prepared catalysts were characterized by XRD, TEM, and XPS. Results showed that the ball milling prepared 10Ce-2La/TiO2 had the advantages of uniform active site distribution, high oxygen storage capacity, and high Ce3+ and Oα ratio. The results of NH3-TPD and H2-TPR showed that the ball milling method not only improved the redox ability but also increased the quantities and concentration of the acidic sites. The green production and economically viable concept of this process provides a new solution for the production application of industrial catalysts.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article