Your browser doesn't support javascript.
loading
Comprehensive characterization of thermal and mechanical properties in thin metal film-glass substrate system by ultrafast laser pump-probe method.
Opt Express ; 30(26): 46193-46208, 2022 Dec 19.
Article em En | MEDLINE | ID: mdl-36558579
ABSTRACT
Picosecond ultrasonics (PU), time-domain Brillouin scattering (TDBS), and time-domain thermo-reflectance (TDTR) are all in-situ, non-destructive, and non-contact experimental techniques based on the ultrafast laser pump-probe method, which can generate and detect coherent acoustic phonons (CAP) and thermal transport in thin metal film-glass substrate system. However, these techniques are generally considered different experimental methods to characterize the thermal or mechanical properties of metal nano-objects or transparent materials. Here we present a comprehensive characterization of the generation, propagation, and attenuation of high-frequency CAP and cross-plane thermal transport in the thin Cr film-glass substrate system by PU, TDBS, and TDTR. To investigate the key factors of characterizations, two kinds of thin Cr film-glass substrate systems were measured on the film side and substrate side. The measured thermal and mechanical properties show that boundary conditions and film thickness have significantly affected the characterization.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article