Your browser doesn't support javascript.
loading
Doped and immobilized titanium dioxide photocatalysts as a potential source of nitrosamine formation.
Seid, Mingizem Gashaw; Son, Aseom; Cho, Kangwoo; Byun, Jeehye; Hong, Seok Won.
Afiliação
  • Seid MG; Center for Water Cycle Research, Korea Institute of Science and Technology, Hwarangro 14 gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea.
  • Son A; Center for Water Cycle Research, Korea Institute of Science and Technology, Hwarangro 14 gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea; Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-701, Republic of Korea.
  • Cho K; Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 406-840, Republic of Korea.
  • Byun J; Center for Water Cycle Research, Korea Institute of Science and Technology, Hwarangro 14 gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea. Electronic address: jbyun@k
  • Hong SW; Center for Water Cycle Research, Korea Institute of Science and Technology, Hwarangro 14 gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea. Electronic address: swhong@
Water Res ; 230: 119573, 2023 Feb 15.
Article em En | MEDLINE | ID: mdl-36621279
Immobilized and visible-light-active titanium dioxide (TiO2) is widely used for water treatment. However, the accelerated generation of degradation byproducts is a potential risk of TiO2-based photocatalysis. This study aimed to investigate the structural effect of engineered TiO2 samples on the formation of major nitrosamines during photocatalysis. The nitrogen-containing impurities and leached metal ions from doped-TiO2 samples could exacerbate nitrosamine formation potential (FP) in distilled water, secondary effluent, and chloraminated water. Doped-TiO2 with 2-ethylimidazole, trimethylamine, triethylamine, and N-carbon nanotubes could leach in the range of 47-64 ng L-1 nitrosamines (including N-nitrosomethylethylamine, N-nitrosodiethylamine, N-nitrosodimethylamine, and N-nitrosopyrrolidine) even under dark conditions. Furthermore, we investigated the role of metal dopants on nitrosamine-FP during the chloramination of precursors such as dimethylamine and microcystin-LR. Metal ions such as Cu that leached from the metal-doped catalysts may catalyze the nitrosamine-FP. Therefore, pre-purification (washing) and immobilization of doped-TiO2 samples on substrates are suggested to remove a considerable amount of nitrosamines. However, during the prolonged tryout, the selection of substrates was critical. Polymeric supports, such as polyimide and polyvinylpyrrolidone, can produce up to 85 ng L-1 nitrosamine, whereas TiO2 immobilized onto steel mesh can remove nitrosamine formation during photocatalytic oxidation followed by chloramination. This study systematically screened a diverse range of dopants, supports, and solvents in engineered TiO2 photocatalysts, in 61 samples, and provided novel insights into their effect on nitrosamine formation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Purificação da Água / Nanotubos de Carbono / Nitrosaminas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Purificação da Água / Nanotubos de Carbono / Nitrosaminas Idioma: En Ano de publicação: 2023 Tipo de documento: Article