Your browser doesn't support javascript.
loading
Master graph: an essential integrated assembly model for the plant mitogenome based on a graph-based framework.
He, Wenchuang; Xiang, Kunli; Chen, Caijin; Wang, Jie; Wu, Zhiqiang.
Afiliação
  • He W; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
  • Xiang K; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
  • Chen C; Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
  • Wang J; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
  • Wu Z; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
Brief Bioinform ; 24(1)2023 01 19.
Article em En | MEDLINE | ID: mdl-36644898
ABSTRACT
Unlike the typical single circular structure of most animal mitochondrial genomes (mitogenome), the drastic structural variation of plant mitogenomes is a result of a mixture of molecules of various sizes and structures. Obtaining the full panoramic plant mitogenome is still considered a roadblock in evolutionary biology. In this study, we developed a graph-based sequence assembly toolkit (GSAT) to construct the pan-structural landscape of plant mitogenome with high-quality mitochondrial master graphs (MMGs) for model species including rice (Oryza sativa) and thale cress (Arabidopsis thaliana). The rice and thale cress MMGs have total lengths of 346 562 and 358 041 bp, including 9 and 6 contigs and 12 and 8 links, respectively, and could be further divided into 6 and 3 minimum master circles and 4 and 2 minimum secondary circles separately. The nuclear mitochondrial DNA segments (NUMTs) in thale cress strongly affected the frequency evaluation of the homologous structures in the mitogenome, while the effects of NUMTs in rice were relatively weak. The mitochondrial plastid DNA segments (MTPTs) in both species had no effects on the assessment of the MMGs. All potential recombinant structures were evaluated, and the findings revealed that all, except for nuclear-homologous structures, MMG structures are present at a much higher frequency than non-MMG structures are. Investigations of potential circular and linear molecules further supported multiple dominant structures in the mitogenomes and could be completely summarized in the MMG. Our study provided an efficient and accurate model for assembling and applying graph-based plant mitogenomes to assess their pan-structural variations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma Mitocondrial Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma Mitocondrial Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article