Your browser doesn't support javascript.
loading
Enhanced anaerobic digestion performance of food waste by zero-valent iron and iron oxides nanoparticles: Comparative analyses of microbial community and metabolism.
Wang, Panliang; Li, Xunan; Li, Ye; Su, Yinglong; Wu, Dong; Xie, Bing.
Afiliação
  • Wang P; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Hena
  • Li X; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Scie
  • Li Y; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Scie
  • Su Y; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Scie
  • Wu D; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Scie
  • Xie B; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Scie
Bioresour Technol ; 371: 128633, 2023 Mar.
Article em En | MEDLINE | ID: mdl-36657585
ABSTRACT
The effects of zero-valent iron (ZVI) and iron oxides nanoparticles on anaerobic digestion (AD) performance of food waste (FW) were comparably clarified in this study. Results indicated that the nanoparticles supplement effectively enhanced the methane yields. As observed, these nanoparticles accelerated organics transformation and alleviated acidification process. Also, the enriched total methanogens and functional bacteria (e.g., Proteiniphilum) were consistent with the promotion of oxidative phosphorylation, citrate cycle, coenzymes biosynthesis and the metabolisms of amino acid, carbohydrate, methane. Additionally, these nanoparticles stimulated electron transfer potential via enriching syntrophic genera (e.g., Geobacter, Syntrophomonas), primary acetate-dependent methanogens (Methanosaeta, Methanosarcina) and related functions (pilus assembly protein, ferredoxins). By comparison, ZVI nanoparticle presented the excellent performance on methanogenesis. This study provides comprehensive understanding of the methanogenesis facilitated by ZVI and iron oxides nanoparticles through the enhancement of key microbes and microbial metabolisms, while ZVI is an excellent option for promoting the methane production.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eliminação de Resíduos / Microbiota Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eliminação de Resíduos / Microbiota Idioma: En Ano de publicação: 2023 Tipo de documento: Article