Your browser doesn't support javascript.
loading
Manifestation of Hydrogen Bonding and Exciton Delocalization on the Absorption and Two-Dimensional Electronic Spectra of Chlorosomes.
Eric, Vesna; Li, Xinmeng; Dsouza, Lolita; Frehan, Sean K; Huijser, Annemarie; Holzwarth, Alfred R; Buda, Francesco; Sevink, G J Agur; de Groot, Huub J M; Jansen, Thomas L C.
Afiliação
  • Eric V; University of Groningen, Zernike Institute for Advanced Materials, 9747 AG Groningen, The Netherlands.
  • Li X; Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Sem Sælands vei 26, 0315 Oslo, Norway.
  • Dsouza L; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
  • Frehan SK; MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
  • Huijser A; MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
  • Holzwarth AR; Department of Biophysical Chemistry, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim, Germany.
  • Buda F; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
  • Sevink GJA; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
  • de Groot HJM; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
  • Jansen TLC; University of Groningen, Zernike Institute for Advanced Materials, 9747 AG Groningen, The Netherlands.
J Phys Chem B ; 127(5): 1097-1109, 2023 Feb 09.
Article em En | MEDLINE | ID: mdl-36696537
ABSTRACT
Chlorosomes are supramolecular aggregates that contain thousands of bacteriochlorophyll molecules. They perform the most efficient ultrafast excitation energy transfer of all natural light-harvesting complexes. Their broad absorption band optimizes light capture. In this study, we identify the microscopic sources of the disorder causing the spectral width and reveal how it affects the excited state properties and the optical response of the system. We combine molecular dynamics, quantum chemical calculations, and response function calculations to achieve this goal. The predicted linear and two-dimensional electronic spectra are found to compare well with experimental data reproducing all key spectral features. Our analysis of the microscopic model reveals the interplay of static and dynamic disorder from the molecular perspective. We find that hydrogen bonding motifs are essential for a correct description of the spectral line shape. Furthermore, we find that exciton delocalization over tens to hundreds of molecules is consistent with the two-dimensional electronic spectra.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article