Your browser doesn't support javascript.
loading
Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data.
Zhao, Jing; Zhao, Bowen; Song, Xiaotong; Lyu, Chujun; Chen, Weizhi; Xiong, Yi; Wei, Dong-Qing.
Afiliação
  • Zhao J; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Zhao B; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Song X; School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Lyu C; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Chen W; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Xiong Y; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Wei DQ; Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
Brief Bioinform ; 24(2)2023 03 19.
Article em En | MEDLINE | ID: mdl-36702755
Due to the high heterogeneity and complexity of cancers, patients with different cancer subtypes often have distinct groups of genomic and clinical characteristics. Therefore, the discovery and identification of cancer subtypes are crucial to cancer diagnosis, prognosis and treatment. Recent technological advances have accelerated the increasing availability of multi-omics data for cancer subtyping. To take advantage of the complementary information from multi-omics data, it is necessary to develop computational models that can represent and integrate different layers of data into a single framework. Here, we propose a decoupled contrastive clustering method (Subtype-DCC) based on multi-omics data integration for clustering to identify cancer subtypes. The idea of contrastive learning is introduced into deep clustering based on deep neural networks to learn clustering-friendly representations. Experimental results demonstrate the superior performance of the proposed Subtype-DCC model in identifying cancer subtypes over the currently available state-of-the-art clustering methods. The strength of Subtype-DCC is also supported by the survival and clinical analysis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Multiômica / Neoplasias Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Multiômica / Neoplasias Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article