Your browser doesn't support javascript.
loading
Accurate Classification and Prediction of Acute Myocardial Infarction through an ARMD Procedure.
Liu, Wuping; Zhang, Lirong; Bao, Lijun; Shen, Guiping; Feng, Jianghua.
Afiliação
  • Liu W; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
  • Zhang L; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
  • Bao L; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
  • Shen G; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
  • Feng J; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
J Proteome Res ; 22(3): 758-767, 2023 03 03.
Article em En | MEDLINE | ID: mdl-36710647
ABSTRACT
The risk stratification of acute myocardial infarction (AMI) patients is of prime importance for clinical management and prognosis assessment. Thus, we propose an ensemble machine learning analysis procedure named ADASYN-RFECV-MDA-DNN (ARMD) to address sample-unbalanced problems and enable stratification and prediction of AMI outcomes. The ARMD analysis procedure was applied to the NMR data of sera from 534 AMI-related subjects in four categories with an extremely imbalanced sample proportion. Firstly, the adaptive synthetic sampling (ADASYN) algorithm was used to address the issue of the original sample imbalance. Secondly, the recursive feature elimination with cross-validation (RFECV) processing and random forest mean decrease accuracy (RF-MDA) algorithm was performed to identify the differential metabolites corresponding to each AMI outcome. Finally, the deep neural network (DNN) was employed to classify and predict AMI events, and its performance was evaluated by comparing the four traditional machine learning methods. Compared with the other four machine learning models, DNN presented consistent superiority in almost all of the model parameters including precision, f1-score, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and classification accuracy, highlighting the potential of deep learning in classification and stratification of clinical diseases. The ARMD analysis procedure was a practical analysis tool for supervised classification and regression modeling of clinical diseases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infarto do Miocárdio Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infarto do Miocárdio Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article