DBDA matrix increases ion abundance of fatty acids and sulfatides in MALDI-TOF and mass spectrometry imaging studies.
bioRxiv
; 2023 Jan 14.
Article
em En
| MEDLINE
| ID: mdl-36711800
MALDI-TOF MS is a powerful tool to analyze biomolecules owing to its soft ionization nature and generally results in simple spectra of singly charged ions. Moreover, implementation of the technology in imaging mode provides a means to spatially map analytes in situ. Recently, a new matrix, DBDA (N1,N4-dibenzylidenebenzene-1,4-diamine) was reported to facilitate the ionization of free fatty acids in the negative ion mode. Building on this finding, we sought to implement DBDA for MALDI mass spectrometry imaging studies in brain tissue and successfully map oleic acid, palmitic acid, stearic acid, docosahexaenoic acid and arachidonic acid using mouse brain sections. Moreover, we hypothesized that DBDA would provide superior ionization for sulfatides, a class of sulfolipids, with multiple biological functions. Herein we also demonstrate that DBDA is ideal for MALDI mass spectrometry imaging of fatty acids and sulfatides in brain tissue sections. Additionally, we show enhanced ionization of sulfatides using DBDA compared to three different traditionally used MALDI matrices. Together these results provide new opportunities for studies to measure sulfatides by MALDI-TOF MS including in imaging modes.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article