Your browser doesn't support javascript.
loading
Single-cell spatial landscapes of the lung tumour immune microenvironment.
Sorin, Mark; Rezanejad, Morteza; Karimi, Elham; Fiset, Benoit; Desharnais, Lysanne; Perus, Lucas J M; Milette, Simon; Yu, Miranda W; Maritan, Sarah M; Doré, Samuel; Pichette, Émilie; Enlow, William; Gagné, Andréanne; Wei, Yuhong; Orain, Michele; Manem, Venkata S K; Rayes, Roni; Siegel, Peter M; Camilleri-Broët, Sophie; Fiset, Pierre Olivier; Desmeules, Patrice; Spicer, Jonathan D; Quail, Daniela F; Joubert, Philippe; Walsh, Logan A.
Afiliação
  • Sorin M; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
  • Rezanejad M; Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
  • Karimi E; Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
  • Fiset B; Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
  • Desharnais L; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
  • Perus LJM; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
  • Milette S; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
  • Yu MW; Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
  • Maritan SM; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
  • Doré S; Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
  • Pichette É; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
  • Enlow W; Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
  • Gagné A; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
  • Wei Y; Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
  • Orain M; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
  • Manem VSK; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
  • Rayes R; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
  • Siegel PM; Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
  • Camilleri-Broët S; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
  • Fiset PO; Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec City, Quebec, Canada.
  • Desmeules P; Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec City, Quebec, Canada.
  • Spicer JD; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
  • Quail DF; Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec City, Quebec, Canada.
  • Joubert P; Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec City, Quebec, Canada.
  • Walsh LA; Department of Mathematics and Computer Science, University of Quebec at Trois-Rivières, Trois-Rivières, Quebec, Canada.
Nature ; 614(7948): 548-554, 2023 02.
Article em En | MEDLINE | ID: mdl-36725934
Single-cell technologies have revealed the complexity of the tumour immune microenvironment with unparalleled resolution1-9. Most clinical strategies rely on histopathological stratification of tumour subtypes, yet the spatial context of single-cell phenotypes within these stratified subgroups is poorly understood. Here we apply imaging mass cytometry to characterize the tumour and immunological landscape of samples from 416 patients with lung adenocarcinoma across five histological patterns. We resolve more than 1.6 million cells, enabling spatial analysis of immune lineages and activation states with distinct clinical correlates, including survival. Using deep learning, we can predict with high accuracy those patients who will progress after surgery using a single 1-mm2 tumour core, which could be informative for clinical management following surgical resection. Our dataset represents a valuable resource for the non-small cell lung cancer research community and exemplifies the utility of spatial resolution within single-cell analyses. This study also highlights how artificial intelligence can improve our understanding of microenvironmental features that underlie cancer progression and may influence future clinical practice.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Célula Única / Microambiente Tumoral / Adenocarcinoma de Pulmão / Neoplasias Pulmonares Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Célula Única / Microambiente Tumoral / Adenocarcinoma de Pulmão / Neoplasias Pulmonares Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article