Your browser doesn't support javascript.
loading
Granger causality analysis for calcium transients in neuronal networks, challenges and improvements.
Chen, Xiaowen; Ginoux, Faustine; Carbo-Tano, Martin; Mora, Thierry; Walczak, Aleksandra M; Wyart, Claire.
Afiliação
  • Chen X; Laboratoire de physique de l'École normale supérieure, CNRS, PSL University, Paris, France.
  • Ginoux F; Spinal Sensory Signaling team, Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Paris, France.
  • Carbo-Tano M; Spinal Sensory Signaling team, Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Paris, France.
  • Mora T; Laboratoire de physique de l'École normale supérieure, CNRS, PSL University, Paris, France.
  • Walczak AM; Laboratoire de physique de l'École normale supérieure, CNRS, PSL University, Paris, France.
  • Wyart C; Spinal Sensory Signaling team, Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Paris, France.
Elife ; 122023 02 07.
Article em En | MEDLINE | ID: mdl-36749019
ABSTRACT
One challenge in neuroscience is to understand how information flows between neurons in vivo to trigger specific behaviors. Granger causality (GC) has been proposed as a simple and effective measure for identifying dynamical interactions. At single-cell resolution however, GC analysis is rarely used compared to directionless correlation analysis. Here, we study the applicability of GC analysis for calcium imaging data in diverse contexts. We first show that despite underlying linearity assumptions, GC analysis successfully retrieves non-linear interactions in a synthetic network simulating intracellular calcium fluctuations of spiking neurons. We highlight the potential pitfalls of applying GC analysis on real in vivo calcium signals, and offer solutions regarding the choice of GC analysis parameters. We took advantage of calcium imaging datasets from motoneurons in embryonic zebrafish to show how the improved GC can retrieve true underlying information flow. Applied to the network of brainstem neurons of larval zebrafish, our pipeline reveals strong driver neurons in the locus of the mesencephalic locomotor region (MLR), driving target neurons matching expectations from anatomical and physiological studies. Altogether, this practical toolbox can be applied on in vivo population calcium signals to increase the selectivity of GC to infer flow of information across neurons.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Cálcio Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Cálcio Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article