Calcium-to-phosphorus releasing ratio affects osteoinductivity and osteoconductivity of calcium phosphate bioceramics in bone tissue engineering.
Biomed Eng Online
; 22(1): 12, 2023 Feb 09.
Article
em En
| MEDLINE
| ID: mdl-36759894
Calcium phosphate (Ca-P) bioceramics, including hydroxyapatite (HA), biphasic calcium phosphate (BCP), and beta-tricalcium phosphate (ß-TCP), have been widely used in bone reconstruction. Many studies have focused on the osteoconductivity or osteoinductivity of Ca-P bioceramics, but the association between osteoconductivity and osteoinductivity is not well understood. In our study, the osteoconductivity of HA, BCP, and ß-TCP was investigated based on the osteoblastic differentiation in vitro and in situ as well as calvarial defect repair in vivo, and osteoinductivity was evaluated by using pluripotent mesenchymal stem cells (MSCs) in vitro and heterotopic ossification in muscles in vivo. Our results showed that the cell viability, alkaline phosphatase activity, and expression of osteogenesis-related genes, including osteocalcin (Ocn), bone sialoprotein (Bsp), alpha-1 type I collagen (Col1a1), and runt-related transcription factor 2 (Runx2), of osteoblasts each ranked as BCP > ß-TCP > HA, but the alkaline phosphatase activity and expression of osteogenic differentiation genes of MSCs each ranked as ß-TCP > BCP > HA. Calvarial defect implantation of Ca-P bioceramics ranked as BCP > ß-TCP ≥ HA, but intramuscular implantation ranked as ß-TCP ≥ BCP > HA in vivo. Further investigation indicated that osteoconductivity and osteoinductivity are affected by the Ca/P ratio surrounding the Ca-P bioceramics. Thus, manipulating the appropriate calcium-to-phosphorus releasing ratio is a critical factor for determining the osteoinductivity of Ca-P bioceramics in bone tissue engineering.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Osteogênese
/
Cálcio
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article