Your browser doesn't support javascript.
loading
Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model.
Robles-Medranda, Carlos; Baquerizo-Burgos, Jorge; Alcivar-Vasquez, Juan; Kahaleh, Michel; Raijman, Isaac; Kunda, Rastislav; Puga-Tejada, Miguel; Egas-Izquierdo, Maria; Arevalo-Mora, Martha; Mendez, Juan C; Tyberg, Amy; Sarkar, Avik; Shahid, Haroon; Del Valle-Zavala, Raquel; Rodriguez, Jorge; Merfea, Ruxandra C; Barreto-Perez, Jonathan; Saldaña-Pazmiño, Gabriela; Calle-Loffredo, Daniel; Alvarado, Haydee; Lukashok, Hannah P.
Afiliação
  • Robles-Medranda C; Gastroenterology, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador.
  • Baquerizo-Burgos J; Gastroenterology, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador.
  • Alcivar-Vasquez J; Gastroenterology, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador.
  • Kahaleh M; Gastroenterology, Robert Wood Johnson Medical School Rutgers University, New Brunswick, New Jersey, United States.
  • Raijman I; Houston Methodist Hospital, Houston, Texas, United States.
  • Kunda R; Baylor Saint Luke's Medical Center, Houston, Texas, United States.
  • Puga-Tejada M; Department of Advanced Interventional Endoscopy, Universitair Ziekenhuis Brussel (UZB)/Vrije Universiteit Brussel (VUB), Brussels, Belgium.
  • Egas-Izquierdo M; Gastroenterology, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador.
  • Arevalo-Mora M; Gastroenterology, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador.
  • Mendez JC; Gastroenterology, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador.
  • Tyberg A; mdconsgroup, Artificial Intelligence Department, Guayaquil, Ecuador.
  • Sarkar A; Gastroenterology, Robert Wood Johnson Medical School Rutgers University, New Brunswick, New Jersey, United States.
  • Shahid H; Gastroenterology, Robert Wood Johnson Medical School Rutgers University, New Brunswick, New Jersey, United States.
  • Del Valle-Zavala R; Gastroenterology, Robert Wood Johnson Medical School Rutgers University, New Brunswick, New Jersey, United States.
  • Rodriguez J; Gastroenterology, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador.
  • Merfea RC; Gastroenterology, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador.
  • Barreto-Perez J; Gastroenterology, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador.
  • Saldaña-Pazmiño G; Gastroenterology, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador.
  • Calle-Loffredo D; Gastroenterology, Hospital Clínico San Carlos, Madrid, Spain.
  • Alvarado H; Gastroenterology, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador.
  • Lukashok HP; Gastroenterology, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador.
Endoscopy ; 55(8): 719-727, 2023 08.
Article em En | MEDLINE | ID: mdl-36781156
BACKGROUND: We aimed to develop a convolutional neural network (CNN) model for detecting neoplastic lesions during real-time digital single-operator cholangioscopy (DSOC) and to clinically validate the model through comparisons with DSOC expert and nonexpert endoscopists. METHODS: In this two-stage study, we first developed and validated CNN1. Then, we performed a multicenter diagnostic trial to compare four DSOC experts and nonexperts against an improved model (CNN2). Lesions were classified into neoplastic and non-neoplastic in accordance with Carlos Robles-Medranda (CRM) and Mendoza disaggregated criteria. The final diagnosis of neoplasia was based on histopathology and 12-month follow-up outcomes. RESULTS: In stage I, CNN2 achieved a mean average precision of 0.88, an intersection over the union value of 83.24 %, and a total loss of 0.0975. For clinical validation, a total of 170 videos from newly included patients were analyzed with the CNN2. Half of cases (50 %) had neoplastic lesions. This model achieved significant accuracy values for neoplastic diagnosis, with a 90.5 % sensitivity, 68.2 % specificity, and 74.0 % and 87.8 % positive and negative predictive values, respectively. The CNN2 model outperformed nonexpert #2 (area under the receiver operating characteristic curve [AUC]-CRM 0.657 vs. AUC-CNN2 0.794, P < 0.05; AUC-Mendoza 0.582 vs. AUC-CNN2 0.794, P < 0.05), nonexpert #4 (AUC-CRM 0.683 vs. AUC-CNN2 0.791, P < 0.05), and expert #4 (AUC-CRM 0.755 vs. AUC-CNN2 0.848, P < 0.05; AUC-Mendoza 0.753 vs. AUC-CNN2 0.848, P < 0.05). CONCLUSIONS: The proposed CNN model distinguished neoplastic bile duct lesions with good accuracy and outperformed two nonexpert and one expert endoscopist.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Neoplasias Tipo de estudo: Clinical_trials / Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Neoplasias Tipo de estudo: Clinical_trials / Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article