Your browser doesn't support javascript.
loading
Cancer metabolism within tumor microenvironments.
Aki, Sho; Nakahara, Ryuichi; Maeda, Keisuke; Osawa, Tsuyoshi.
Afiliação
  • Aki S; Division of Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
  • Nakahara R; Division of Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
  • Maeda K; Division of Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
  • Osawa T; Division of Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan. Electronic address: osawa@lsbm.org.
Biochim Biophys Acta Gen Subj ; 1867(5): 130330, 2023 05.
Article em En | MEDLINE | ID: mdl-36804842
ABSTRACT

BACKGROUND:

Tumor microenvironments could determine cancer heterogeneity and malignancy. Hypoxia, nutrition starvation, and acidic pH could contribute to cancer malignancy associated with genetic, epigenetic, and metabolic alterations, promoting invasion and metastasis. Cancer cells adapting to extreme tumor microenvironments could enable evasion of cell death and immune responses. It could stimulate drug resistance and recurrence, resulting in poor patient prognosis. Therefore, investigating druggable targets of the malignant cancer cells within tumor microenvironments is necessary, but such treatments are limited. Cell-cell metabolic interaction may also contribute to cancer malignancy within the tumor microenvironments. Organelle-organelle interactions have recently gained attention as new cancer therapy targets as they play essential roles in the metabolic adaptation to the tumor microenvironment. In this review, we overview (1) metabolic alterations within tumor microenvironments, (2) cell-to-cell, and (3) organelle-to-organelle metabolic interactions, and we add novel insights into cancer therapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microambiente Tumoral / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microambiente Tumoral / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article