Your browser doesn't support javascript.
loading
Bright and Efficient Light-Emitting Devices Based on 2D Transition Metal Dichalcogenides.
Ahmed, Tanveer; Zha, Jiajia; Lin, Kris Kh; Kuo, Hao-Chung; Tan, Chaoliang; Lien, Der-Hsien.
Afiliação
  • Ahmed T; Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
  • Zha J; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 9990777, China.
  • Lin KK; Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
  • Kuo HC; Semiconductor Research Center, Hon Hai Research Institute, Taipei, 11492, Taiwan.
  • Tan C; Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
  • Lien DH; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 9990777, China.
Adv Mater ; 35(31): e2208054, 2023 Aug.
Article em En | MEDLINE | ID: mdl-36808659
ABSTRACT
2D monolayer transition metal dichalcogenides (TMDCs) show great promise for the development of next-generation light-emitting devices owing to their unique electronic and optoelectronic properties. The dangling-bond-free surface and direct-bandgap structure of monolayer TMDCs allow for near-unity photoluminescence quantum efficiencies. The excellent mechanical and optical characteristics of 2D TMDCs offer great potential to fabricate TMDC-based light-emitting diodes (LEDs) featuring good flexibility and transparency. Great progress has been made in the fabrication of bright and efficient LEDs with varying device structures. In this review, the aim is to provide a comprehensive summary of the state-of-the-art progress made in the construction of bright and efficient LEDs based on 2D TMDCs. After a brief introduction to the research background, the preparation of 2D TMDCs used for LEDs is briefly discussed. The requirements and the corresponding challenges to achieve bright and efficient LEDs based on 2D TMDCs are introduced. Thereafter, various strategies to enhance the brightness of monolayer 2D TMDCs are described. Following that, the carrier-injection schemes enabling bright and efficient TMDC-based LEDs along with the device performance are summarized. Finally, the challenges and future prospects regarding the accomplishment of TMDC-LEDs with ultimate brightness and efficiency are discussed.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article