Your browser doesn't support javascript.
loading
Achieving High Single-Pass Carbon Conversion Efficiencies in Durable CO2 Electroreduction in Strong Acids via Electrode Structure Engineering.
Li, Le; Liu, Zhaoyang; Yu, Xiaohan; Zhong, Miao.
Afiliação
  • Li L; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China.
  • Liu Z; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China.
  • Yu X; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China.
  • Zhong M; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China.
Angew Chem Int Ed Engl ; 62(21): e202300226, 2023 May 15.
Article em En | MEDLINE | ID: mdl-36810852
ABSTRACT
Acidic CO2 reduction (CO2 R) holds promise for the synthesis of low-carbon-footprint chemicals using renewable electricity. However, the corrosion of catalysts in strong acids causes severe hydrogen evolution and rapid deterioration of CO2 R performance. Here, by coating catalysts with an electrically nonconductive nanoporous SiC-NafionTM layer, a near-neutral pH was stabilized on catalyst surfaces, thereby protecting the catalysts against corrosion for durable CO2 R in strong acids. Electrode microstructures played a critical role in regulating ion diffusion and stabilizing electrohydrodynamic flows near catalyst surfaces. This surface-coating strategy was applied to three catalysts, SnBi, Ag, and Cu, and they exhibited high activity over extended CO2 R operation in strong acids. Using a stratified SiC-NafionTM /SnBi/polytetrafluoroethylene (PTFE) electrode, constant production of formic acid was achieved with a single-pass carbon efficiency of >75 % and Faradaic efficiency of >90 % at 100 mA cm-2 over 125 h at pH 1.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article