An optimized machine learning technology scheme and its application in fault detection in wireless sensor networks.
J Appl Stat
; 50(3): 592-609, 2023.
Article
em En
| MEDLINE
| ID: mdl-36819085
Aiming at the problem of fault detection in data collection in wireless sensor networks, this paper combines evolutionary computing and machine learning to propose a productive technical solution. We choose the classical particle swarm optimization (PSO) and improve it, including the introduction of a biological population model to control the population size, and the addition of a parallel mechanism for further tuning. The proposed RS-PPSO algorithm was successfully used to optimize the initial weights and biases of back propagation neural network (BPNN), shortening the training time and raising the prediction accuracy. Wireless sensor networks (WSN) has become the key supporting platform of Internet of Things (IoT). The correctness of the data collected by the sensor nodes has a great influence on the reliability, real-time performance and energy saving of the entire network. The optimized machine learning technology scheme given in this paper can effectively identify the fault data, so as to ensure the effective operation of WSN.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article